Cargando…
A framework for extending trial design to facilitate missing data sensitivity analyses
BACKGROUND: Missing data are an inevitable challenge in Randomised Controlled Trials (RCTs), particularly those with Patient Reported Outcome Measures. Methodological guidance suggests that to avoid incorrect conclusions, studies should undertake sensitivity analyses which recognise that data may be...
Autores principales: | Mason, Alexina J., Grieve, Richard D., Richards-Belle, Alvin, Mouncey, Paul R., Harrison, David A., Carpenter, James R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076973/ https://www.ncbi.nlm.nih.gov/pubmed/32183708 http://dx.doi.org/10.1186/s12874-020-00930-2 |
Ejemplares similares
-
A Bayesian framework for health economic evaluation in studies with missing data
por: Mason, Alexina J., et al.
Publicado: (2018) -
MitoIMP: A Computational Framework for Imputation of Missing Data in
Low-Coverage Human Mitochondrial Genome
por: Ishiya, Koji, et al.
Publicado: (2019) -
Heckman-type selection models to obtain unbiased estimates with missing measures outcome: theoretical considerations and an application to missing birth weight data
por: Koné, Siaka, et al.
Publicado: (2019) -
Extending Classification Algorithms to Case-Control Studies
por: Stanfill, Bryan, et al.
Publicado: (2019) -
Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial
por: Mason, Alexina J, et al.
Publicado: (2017)