Cargando…
Long Non-Coding RNA Taurine Upregulated Gene 1 (TUG1) Downregulation Constrains Cell Proliferation and Invasion through Regulating Cell Division Cycle 42 (CDC42) Expression Via MiR-498 in Esophageal Squamous Cell Carcinoma Cells
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor of the gastrointestinal tract. Taurine upregulated gene 1 (TUG1), a long non-coding (lnc) RNA, also known as LIN00080 or TI-227H, was connected with the tumorigenesis of various diseases. Hence, we plumed the role and molecul...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077061/ https://www.ncbi.nlm.nih.gov/pubmed/32139664 http://dx.doi.org/10.12659/MSM.919714 |
Sumario: | BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor of the gastrointestinal tract. Taurine upregulated gene 1 (TUG1), a long non-coding (lnc) RNA, also known as LIN00080 or TI-227H, was connected with the tumorigenesis of various diseases. Hence, we plumed the role and molecular mechanism of TUG1 in the progression of ESCC. MATERIAL/METHODS: Expression patterns of TUG1, microRNA-498 (miR-498), and cell division cycle 42 (CDC42) mRNA were assessed using quantitative real time polymerase chain reaction (qRT-PCR). The expression level of CDC42 protein was evaluated via western blot analysis. Cell proliferation and invasion were determined with Cell Counting Kit-8 (CCK-8) assay or Transwell assay. The relationship between miR-498 and TUG1 or CDC42 was predicted by online bioinformatics database LncBase Predicted v.2 or microT-CDS and confirmed through dual-luciferase reporter system or RNA immunoprecipitation assay (RIP). RESULTS: TUG1 and CDC42 were upregulated while miR-498 was strikingly decreased in ESCC tissues and cells (P<0.0001). Besides, TUG1 suppression blocked the proliferation and invasion of ESCC cells (P<0.001). Importantly, TUG1 decrease restrained CDC42 expression via binding to miR-498 in ESCC cells. Also, the suppressive impacts of TUG1 silencing on the proliferation and invasion of ESCC cells were mitigated by miR-498 reduction. Meanwhile, the repression of proliferation and invasion induced by miR-498 elevation was weakened by CDC42 overexpression. CONCLUSIONS: Inhibition of TUG1 hampered cell proliferation and invasion by downregulating CDC42 via upregulating miR-498 in ESCC cells. Thus, TUG1 might be an underlying therapeutic target for ESCC. |
---|