Cargando…
A convolutional neural network-based system to classify patients using FDG PET/CT examinations
BACKGROUND: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neura...
Autores principales: | Kawauchi, Keisuke, Furuya, Sho, Hirata, Kenji, Katoh, Chietsugu, Manabe, Osamu, Kobayashi, Kentaro, Watanabe, Shiro, Shiga, Tohru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077155/ https://www.ncbi.nlm.nih.gov/pubmed/32183748 http://dx.doi.org/10.1186/s12885-020-6694-x |
Ejemplares similares
-
A convolutional neural network-based system to prevent patient misidentification in FDG-PET examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2019) -
A convolutional neural network-based system to estimate the arterial plasma radioactivity curve in (18)F-FDG dynamic brain PET study
por: Kawauchi, Keisuke, et al.
Publicado: (2023) -
A Preliminary Study to Use SUVmax of FDG PET-CT as an Identifier of Lesion for Artificial Intelligence
por: Hirata, Kenji, et al.
Publicado: (2021) -
Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images
por: Kawakami, Masashi, et al.
Publicado: (2020) -
Combination of FDG-PET and FMISO-PET as a treatment strategy for patients undergoing early-stage NSCLC stereotactic radiotherapy
por: Watanabe, Shiro, et al.
Publicado: (2019)