Cargando…
A Numerical Investigation on the Collision Behavior of Polymer Droplets
Binary droplet collisions are a key mechanism in powder coatings production, as well as in spray combustion, ink-jet printing, and other spray processes. The collision behavior of the droplets using Newtonian and polymer liquids is studied numerically by the coupled level-set and volume of fluid (CL...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077334/ https://www.ncbi.nlm.nih.gov/pubmed/31991675 http://dx.doi.org/10.3390/polym12020263 |
_version_ | 1783507409045553152 |
---|---|
author | Qian, Lijuan Cong, Hongchuan Zhu, Chenlin |
author_facet | Qian, Lijuan Cong, Hongchuan Zhu, Chenlin |
author_sort | Qian, Lijuan |
collection | PubMed |
description | Binary droplet collisions are a key mechanism in powder coatings production, as well as in spray combustion, ink-jet printing, and other spray processes. The collision behavior of the droplets using Newtonian and polymer liquids is studied numerically by the coupled level-set and volume of fluid (CLSVOF) method and adaptive mesh refinement (AMR). The deformation process, the internal flow fields, and the energy evolution of the droplets are discussed in detail. For binary polymer droplet collisions, compared with the Newtonian liquid, the maximum deformation is promoted. Due to the increased viscous dissipation, the colliding droplets coalesce more slowly. The stagnant flow region in the velocity field increases and the flow re-direction phenomenon is suppressed, so the polymer droplets coalesce permanently. As the surface tension of the polymer droplets decreases, the kinetic and the dissipated energy increases. The maximum deformation is promoted, and the coalescence speed of the droplets slows down. During the collision process, the dominant pressure inside the polymer droplets varies from positive pressure to negative pressure and then to positive pressure. At low surface tension, due to the non-synchronization in the movement of the interface front, the pressure is not smooth and distributes asymmetrically near the center of the droplets. |
format | Online Article Text |
id | pubmed-7077334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70773342020-03-20 A Numerical Investigation on the Collision Behavior of Polymer Droplets Qian, Lijuan Cong, Hongchuan Zhu, Chenlin Polymers (Basel) Article Binary droplet collisions are a key mechanism in powder coatings production, as well as in spray combustion, ink-jet printing, and other spray processes. The collision behavior of the droplets using Newtonian and polymer liquids is studied numerically by the coupled level-set and volume of fluid (CLSVOF) method and adaptive mesh refinement (AMR). The deformation process, the internal flow fields, and the energy evolution of the droplets are discussed in detail. For binary polymer droplet collisions, compared with the Newtonian liquid, the maximum deformation is promoted. Due to the increased viscous dissipation, the colliding droplets coalesce more slowly. The stagnant flow region in the velocity field increases and the flow re-direction phenomenon is suppressed, so the polymer droplets coalesce permanently. As the surface tension of the polymer droplets decreases, the kinetic and the dissipated energy increases. The maximum deformation is promoted, and the coalescence speed of the droplets slows down. During the collision process, the dominant pressure inside the polymer droplets varies from positive pressure to negative pressure and then to positive pressure. At low surface tension, due to the non-synchronization in the movement of the interface front, the pressure is not smooth and distributes asymmetrically near the center of the droplets. MDPI 2020-01-24 /pmc/articles/PMC7077334/ /pubmed/31991675 http://dx.doi.org/10.3390/polym12020263 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qian, Lijuan Cong, Hongchuan Zhu, Chenlin A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title | A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title_full | A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title_fullStr | A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title_full_unstemmed | A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title_short | A Numerical Investigation on the Collision Behavior of Polymer Droplets |
title_sort | numerical investigation on the collision behavior of polymer droplets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077334/ https://www.ncbi.nlm.nih.gov/pubmed/31991675 http://dx.doi.org/10.3390/polym12020263 |
work_keys_str_mv | AT qianlijuan anumericalinvestigationonthecollisionbehaviorofpolymerdroplets AT conghongchuan anumericalinvestigationonthecollisionbehaviorofpolymerdroplets AT zhuchenlin anumericalinvestigationonthecollisionbehaviorofpolymerdroplets AT qianlijuan numericalinvestigationonthecollisionbehaviorofpolymerdroplets AT conghongchuan numericalinvestigationonthecollisionbehaviorofpolymerdroplets AT zhuchenlin numericalinvestigationonthecollisionbehaviorofpolymerdroplets |