Cargando…

Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization

The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Nee...

Descripción completa

Detalles Bibliográficos
Autores principales: Basiron, Norfatehah, Sreekantan, Srimala, Jit Kang, Lim, Md Akil, Hazizan, S.M.N. Mydin, Rabiatul Basria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077703/
https://www.ncbi.nlm.nih.gov/pubmed/32050485
http://dx.doi.org/10.3390/polym12020394
_version_ 1783507492056072192
author Basiron, Norfatehah
Sreekantan, Srimala
Jit Kang, Lim
Md Akil, Hazizan
S.M.N. Mydin, Rabiatul Basria
author_facet Basiron, Norfatehah
Sreekantan, Srimala
Jit Kang, Lim
Md Akil, Hazizan
S.M.N. Mydin, Rabiatul Basria
author_sort Basiron, Norfatehah
collection PubMed
description The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.
format Online
Article
Text
id pubmed-7077703
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70777032020-03-20 Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization Basiron, Norfatehah Sreekantan, Srimala Jit Kang, Lim Md Akil, Hazizan S.M.N. Mydin, Rabiatul Basria Polymers (Basel) Article The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%. MDPI 2020-02-09 /pmc/articles/PMC7077703/ /pubmed/32050485 http://dx.doi.org/10.3390/polym12020394 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Basiron, Norfatehah
Sreekantan, Srimala
Jit Kang, Lim
Md Akil, Hazizan
S.M.N. Mydin, Rabiatul Basria
Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title_full Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title_fullStr Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title_full_unstemmed Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title_short Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization
title_sort coupled oxides/lldpe composites for textile effluent treatment: effect of neem and pva stabilization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077703/
https://www.ncbi.nlm.nih.gov/pubmed/32050485
http://dx.doi.org/10.3390/polym12020394
work_keys_str_mv AT basironnorfatehah coupledoxideslldpecompositesfortextileeffluenttreatmenteffectofneemandpvastabilization
AT sreekantansrimala coupledoxideslldpecompositesfortextileeffluenttreatmenteffectofneemandpvastabilization
AT jitkanglim coupledoxideslldpecompositesfortextileeffluenttreatmenteffectofneemandpvastabilization
AT mdakilhazizan coupledoxideslldpecompositesfortextileeffluenttreatmenteffectofneemandpvastabilization
AT smnmydinrabiatulbasria coupledoxideslldpecompositesfortextileeffluenttreatmenteffectofneemandpvastabilization