Cargando…
Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase
Biological knowledgebases rely on expert biocuration of the research literature to maintain up-to-date collections of data organized in machine-readable form. To enter information into knowledgebases, curators need to follow three steps: (i) identify papers containing relevant data, a process called...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078066/ https://www.ncbi.nlm.nih.gov/pubmed/32185395 http://dx.doi.org/10.1093/database/baaa006 |
_version_ | 1783507538021449728 |
---|---|
author | Arnaboldi, Valerio Raciti, Daniela Van Auken, Kimberly Chan, Juancarlos N Müller, Hans-Michael Sternberg, Paul W |
author_facet | Arnaboldi, Valerio Raciti, Daniela Van Auken, Kimberly Chan, Juancarlos N Müller, Hans-Michael Sternberg, Paul W |
author_sort | Arnaboldi, Valerio |
collection | PubMed |
description | Biological knowledgebases rely on expert biocuration of the research literature to maintain up-to-date collections of data organized in machine-readable form. To enter information into knowledgebases, curators need to follow three steps: (i) identify papers containing relevant data, a process called triaging; (ii) recognize named entities; and (iii) extract and curate data in accordance with the underlying data models. WormBase (WB), the authoritative repository for research data on Caenorhabditis elegans and other nematodes, uses text mining (TM) to semi-automate its curation pipeline. In addition, WB engages its community, via an Author First Pass (AFP) system, to help recognize entities and classify data types in their recently published papers. In this paper, we present a new WB AFP system that combines TM and AFP into a single application to enhance community curation. The system employs string-searching algorithms and statistical methods (e.g. support vector machines (SVMs)) to extract biological entities and classify data types, and it presents the results to authors in a web form where they validate the extracted information, rather than enter it de novo as the previous form required. With this new system, we lessen the burden for authors, while at the same time receive valuable feedback on the performance of our TM tools. The new user interface also links out to specific structured data submission forms, e.g. for phenotype or expression pattern data, giving the authors the opportunity to contribute a more detailed curation that can be incorporated into WB with minimal curator review. Our approach is generalizable and could be applied to additional knowledgebases that would like to engage their user community in assisting with the curation. In the five months succeeding the launch of the new system, the response rate has been comparable with that of the previous AFP version, but the quality and quantity of the data received has greatly improved. |
format | Online Article Text |
id | pubmed-7078066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-70780662020-03-23 Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase Arnaboldi, Valerio Raciti, Daniela Van Auken, Kimberly Chan, Juancarlos N Müller, Hans-Michael Sternberg, Paul W Database (Oxford) Original Article Biological knowledgebases rely on expert biocuration of the research literature to maintain up-to-date collections of data organized in machine-readable form. To enter information into knowledgebases, curators need to follow three steps: (i) identify papers containing relevant data, a process called triaging; (ii) recognize named entities; and (iii) extract and curate data in accordance with the underlying data models. WormBase (WB), the authoritative repository for research data on Caenorhabditis elegans and other nematodes, uses text mining (TM) to semi-automate its curation pipeline. In addition, WB engages its community, via an Author First Pass (AFP) system, to help recognize entities and classify data types in their recently published papers. In this paper, we present a new WB AFP system that combines TM and AFP into a single application to enhance community curation. The system employs string-searching algorithms and statistical methods (e.g. support vector machines (SVMs)) to extract biological entities and classify data types, and it presents the results to authors in a web form where they validate the extracted information, rather than enter it de novo as the previous form required. With this new system, we lessen the burden for authors, while at the same time receive valuable feedback on the performance of our TM tools. The new user interface also links out to specific structured data submission forms, e.g. for phenotype or expression pattern data, giving the authors the opportunity to contribute a more detailed curation that can be incorporated into WB with minimal curator review. Our approach is generalizable and could be applied to additional knowledgebases that would like to engage their user community in assisting with the curation. In the five months succeeding the launch of the new system, the response rate has been comparable with that of the previous AFP version, but the quality and quantity of the data received has greatly improved. Oxford University Press 2020-03-17 /pmc/articles/PMC7078066/ /pubmed/32185395 http://dx.doi.org/10.1093/database/baaa006 Text en © The Author(s) 2020. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Arnaboldi, Valerio Raciti, Daniela Van Auken, Kimberly Chan, Juancarlos N Müller, Hans-Michael Sternberg, Paul W Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title | Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title_full | Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title_fullStr | Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title_full_unstemmed | Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title_short | Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase |
title_sort | text mining meets community curation: a newly designed curation platform to improve author experience and participation at wormbase |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078066/ https://www.ncbi.nlm.nih.gov/pubmed/32185395 http://dx.doi.org/10.1093/database/baaa006 |
work_keys_str_mv | AT arnaboldivalerio textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase AT racitidaniela textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase AT vanaukenkimberly textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase AT chanjuancarlosn textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase AT mullerhansmichael textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase AT sternbergpaulw textminingmeetscommunitycurationanewlydesignedcurationplatformtoimproveauthorexperienceandparticipationatwormbase |