Cargando…

Comparison of echocardiographic and invasive measures of volaemia and cardiac performance in critically ill patients

Echocardiographic measurements are used in critical care to evaluate volume status and cardiac performance. Mean systemic filling pressure and global heart efficiency measures intravascular volume and global heart function. This prospective study conducted in fifty haemodynamically stabilized, mecha...

Descripción completa

Detalles Bibliográficos
Autores principales: Yastrebov, Konstantin, Aneman, Anders, Schulz, Luis, Hamp, Thomas, McCanny, Peter, Parkin, Geoffrey, Myburgh, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078248/
https://www.ncbi.nlm.nih.gov/pubmed/32184461
http://dx.doi.org/10.1038/s41598-020-61761-1
Descripción
Sumario:Echocardiographic measurements are used in critical care to evaluate volume status and cardiac performance. Mean systemic filling pressure and global heart efficiency measures intravascular volume and global heart function. This prospective study conducted in fifty haemodynamically stabilized, mechanically ventilated patients investigated relationships between static echocardiographic variables and estimates of global heart efficiency and mean systemic filling pressure. Results of univariate analysis demonstrated weak correlations between left ventricular end-diastolic volume index (r = 0.27, p = 0.04), right atrial volume index (rho = 0.31, p = 0.03) and analogue mean systemic filling pressure; moderate correlations between left ventricular ejection fraction (r = 0.31, p = 0.03), left ventricular global longitudinal strain (r = 0.36, p = 0.04), tricuspid annular plane systolic excursion (rho = 0.37, p = 0.01) and global heart efficiency. No significant correlations were demonstrated by multiple regression. Mean systemic filling pressure calculated with cardiac output measured by echocardiography demonstrated good agreement and correlation with invasive techniques (bias 0.52 ± 1.7 mmHg, limits of agreement −2.9 to 3.9 mmHg, r = 0.9, p < 0.001). Static echocardiographic variables did not reliably reflect the volume state as defined by estimates of mean systemic filling pressure. The agreement between static echocardiographic variables of cardiac performance and global heart efficiency lacked robustness. Echocardiographic measurements of cardiac output can be reliably used in calculation of mean systemic filling pressure.