Cargando…
Challenges in detecting and quantifying intron retention from next generation sequencing data
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions and in disease. Here we give an overview of the different computational approaches for detect...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078297/ https://www.ncbi.nlm.nih.gov/pubmed/32206209 http://dx.doi.org/10.1016/j.csbj.2020.02.010 |
Sumario: | Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions and in disease. Here we give an overview of the different computational approaches for detecting IR events from sequencing data. We show that these are based on different biological and computational assumptions that may lead to dramatically different results. We describe the various approaches for mitigating errors in detecting intron retention and for discovering IR signatures between different conditions. |
---|