Cargando…
Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking
The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078486/ https://www.ncbi.nlm.nih.gov/pubmed/32184257 http://dx.doi.org/10.1128/mBio.03320-19 |
_version_ | 1783507630772191232 |
---|---|
author | McHugh, Emma Carmo, Olivia M. S. Blanch, Adam Looker, Oliver Liu, Boyin Tiash, Snigdha Andrew, Dean Batinovic, Steven Low, Andy J. Y. Cho, Hyun-Jung McMillan, Paul Tilley, Leann Dixon, Matthew W. A. |
author_facet | McHugh, Emma Carmo, Olivia M. S. Blanch, Adam Looker, Oliver Liu, Boyin Tiash, Snigdha Andrew, Dean Batinovic, Steven Low, Andy J. Y. Cho, Hyun-Jung McMillan, Paul Tilley, Leann Dixon, Matthew W. A. |
author_sort | McHugh, Emma |
collection | PubMed |
description | The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile. |
format | Online Article Text |
id | pubmed-7078486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-70784862020-03-31 Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking McHugh, Emma Carmo, Olivia M. S. Blanch, Adam Looker, Oliver Liu, Boyin Tiash, Snigdha Andrew, Dean Batinovic, Steven Low, Andy J. Y. Cho, Hyun-Jung McMillan, Paul Tilley, Leann Dixon, Matthew W. A. mBio Research Article The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile. American Society for Microbiology 2020-03-17 /pmc/articles/PMC7078486/ /pubmed/32184257 http://dx.doi.org/10.1128/mBio.03320-19 Text en Copyright © 2020 McHugh et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article McHugh, Emma Carmo, Olivia M. S. Blanch, Adam Looker, Oliver Liu, Boyin Tiash, Snigdha Andrew, Dean Batinovic, Steven Low, Andy J. Y. Cho, Hyun-Jung McMillan, Paul Tilley, Leann Dixon, Matthew W. A. Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title | Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title_full | Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title_fullStr | Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title_full_unstemmed | Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title_short | Role of Plasmodium falciparum Protein GEXP07 in Maurer’s Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking |
title_sort | role of plasmodium falciparum protein gexp07 in maurer’s cleft morphology, knob architecture, and p. falciparum emp1 trafficking |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078486/ https://www.ncbi.nlm.nih.gov/pubmed/32184257 http://dx.doi.org/10.1128/mBio.03320-19 |
work_keys_str_mv | AT mchughemma roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT carmooliviams roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT blanchadam roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT lookeroliver roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT liuboyin roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT tiashsnigdha roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT andrewdean roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT batinovicsteven roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT lowandyjy roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT chohyunjung roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT mcmillanpaul roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT tilleyleann roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking AT dixonmatthewwa roleofplasmodiumfalciparumproteingexp07inmaurerscleftmorphologyknobarchitectureandpfalciparumemp1trafficking |