Cargando…

Planar interpolation by second order spiral splines

Second order spiral splines are [Formula: see text] unit-speed planar curves that can be used to interpolate a finite list of points in the Euclidean plane. A fast algorithm is given for interpolation when the data comes from a strictly convex planar curve. The method uses a pair of tridiagonal syst...

Descripción completa

Detalles Bibliográficos
Autor principal: Noakes, Lyle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078547/
https://www.ncbi.nlm.nih.gov/pubmed/32195129
http://dx.doi.org/10.1016/j.mex.2019.100776
_version_ 1783507642417676288
author Noakes, Lyle
author_facet Noakes, Lyle
author_sort Noakes, Lyle
collection PubMed
description Second order spiral splines are [Formula: see text] unit-speed planar curves that can be used to interpolate a finite list of points in the Euclidean plane. A fast algorithm is given for interpolation when the data comes from a strictly convex planar curve. The method uses a pair of tridiagonal systems of linear equations to find an approximate interpolant. Then the approximation is used with standard software to construct an exact interpolant. • The data should be planar and strictly convex. • The method is robust and extremely fast.
format Online
Article
Text
id pubmed-7078547
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-70785472020-03-19 Planar interpolation by second order spiral splines Noakes, Lyle MethodsX Mathematics Second order spiral splines are [Formula: see text] unit-speed planar curves that can be used to interpolate a finite list of points in the Euclidean plane. A fast algorithm is given for interpolation when the data comes from a strictly convex planar curve. The method uses a pair of tridiagonal systems of linear equations to find an approximate interpolant. Then the approximation is used with standard software to construct an exact interpolant. • The data should be planar and strictly convex. • The method is robust and extremely fast. Elsevier 2020-01-13 /pmc/articles/PMC7078547/ /pubmed/32195129 http://dx.doi.org/10.1016/j.mex.2019.100776 Text en Crown Copyright © 2020 Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Mathematics
Noakes, Lyle
Planar interpolation by second order spiral splines
title Planar interpolation by second order spiral splines
title_full Planar interpolation by second order spiral splines
title_fullStr Planar interpolation by second order spiral splines
title_full_unstemmed Planar interpolation by second order spiral splines
title_short Planar interpolation by second order spiral splines
title_sort planar interpolation by second order spiral splines
topic Mathematics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078547/
https://www.ncbi.nlm.nih.gov/pubmed/32195129
http://dx.doi.org/10.1016/j.mex.2019.100776
work_keys_str_mv AT noakeslyle planarinterpolationbysecondorderspiralsplines