Cargando…

Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs

PTMC-PEG-PTMC triblock copolymers were prepared by ring-opening polymerization of trimethylene carbonate (TMC) in the presence of dihydroxylated poly(ethylene glycol) (PEG) with Mn of 6000 and 10,000 as macro-initiator. The copolymers with different PTMC block Lengths and the two PEGs were end funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuandou, Xi, Laishun, Zhang, Baogang, Zhu, Qingzhen, Su, Feng, Jelonek, Katarzyna, Orchel, Arkadiusz, Kasperczyk, Janusz, Li, Suming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078571/
https://www.ncbi.nlm.nih.gov/pubmed/32194330
http://dx.doi.org/10.1016/j.jsps.2020.01.008
_version_ 1783507648254050304
author Wang, Yuandou
Xi, Laishun
Zhang, Baogang
Zhu, Qingzhen
Su, Feng
Jelonek, Katarzyna
Orchel, Arkadiusz
Kasperczyk, Janusz
Li, Suming
author_facet Wang, Yuandou
Xi, Laishun
Zhang, Baogang
Zhu, Qingzhen
Su, Feng
Jelonek, Katarzyna
Orchel, Arkadiusz
Kasperczyk, Janusz
Li, Suming
author_sort Wang, Yuandou
collection PubMed
description PTMC-PEG-PTMC triblock copolymers were prepared by ring-opening polymerization of trimethylene carbonate (TMC) in the presence of dihydroxylated poly(ethylene glycol) (PEG) with Mn of 6000 and 10,000 as macro-initiator. The copolymers with different PTMC block Lengths and the two PEGs were end functionalized with acryloyl chloride. The resulting diacrylated PEG-PTMC-DA and PEG-DA were characterized by using NMR, GPC and DSC. The degree of substitution of end groups varied from 50.0 to 65.1%. Hydrogels were prepared by photo-crosslinking PEG-PTMC-DA and PEG-DA in aqueous solution using a water soluble photo-initiator under visible light irradiation. The effects of PTMC and PEG block lengths and degree of substitution on the swelling and weight loss of hydrogels were determined. Higher degree of substitution leads to higher crosslinking density, and thus to lower degree of swelling and weight loss. Similarly, higher PTMC block length also leads to lower degree of swelling and weight loss. Freeze dried hydrogels exhibit a highly porous structure with pore sizes from 20 to 100 µm. The biocompatibility of hydrogels was evaluated by MTT assay, hemolysis test, and dynamic clotting time measurements. Results show that the various hydrogels present outstanding cyto- and hemo-compatibility. Doxorubicin was taken as a model drug to evaluate the potential of PEG-PTMC-DA and PEG-DA hydrogels as drug carrier. An initial burst release was observed in all cases, followed by slower release up to more than 90%. The release rate is strongly dependent on the degree of swelling. The higher the degree of swelling, the faster the release rate. Finally, the effect of drug loaded hydrogels on SKBR-3 tumor cells was evaluated in comparison with free drug. Similar cyto-toxicity was obtained for drug loaded hydrogels and free drug at comparable drug concentrations. Therefore, injectable PEG-PTMC-DA hydrogels with outstanding biocompatibility and drug release properties could be most promising as bioresorbable carrier of hydrophilic drugs.
format Online
Article
Text
id pubmed-7078571
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-70785712020-03-19 Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs Wang, Yuandou Xi, Laishun Zhang, Baogang Zhu, Qingzhen Su, Feng Jelonek, Katarzyna Orchel, Arkadiusz Kasperczyk, Janusz Li, Suming Saudi Pharm J Article PTMC-PEG-PTMC triblock copolymers were prepared by ring-opening polymerization of trimethylene carbonate (TMC) in the presence of dihydroxylated poly(ethylene glycol) (PEG) with Mn of 6000 and 10,000 as macro-initiator. The copolymers with different PTMC block Lengths and the two PEGs were end functionalized with acryloyl chloride. The resulting diacrylated PEG-PTMC-DA and PEG-DA were characterized by using NMR, GPC and DSC. The degree of substitution of end groups varied from 50.0 to 65.1%. Hydrogels were prepared by photo-crosslinking PEG-PTMC-DA and PEG-DA in aqueous solution using a water soluble photo-initiator under visible light irradiation. The effects of PTMC and PEG block lengths and degree of substitution on the swelling and weight loss of hydrogels were determined. Higher degree of substitution leads to higher crosslinking density, and thus to lower degree of swelling and weight loss. Similarly, higher PTMC block length also leads to lower degree of swelling and weight loss. Freeze dried hydrogels exhibit a highly porous structure with pore sizes from 20 to 100 µm. The biocompatibility of hydrogels was evaluated by MTT assay, hemolysis test, and dynamic clotting time measurements. Results show that the various hydrogels present outstanding cyto- and hemo-compatibility. Doxorubicin was taken as a model drug to evaluate the potential of PEG-PTMC-DA and PEG-DA hydrogels as drug carrier. An initial burst release was observed in all cases, followed by slower release up to more than 90%. The release rate is strongly dependent on the degree of swelling. The higher the degree of swelling, the faster the release rate. Finally, the effect of drug loaded hydrogels on SKBR-3 tumor cells was evaluated in comparison with free drug. Similar cyto-toxicity was obtained for drug loaded hydrogels and free drug at comparable drug concentrations. Therefore, injectable PEG-PTMC-DA hydrogels with outstanding biocompatibility and drug release properties could be most promising as bioresorbable carrier of hydrophilic drugs. Elsevier 2020-03 2020-01-31 /pmc/articles/PMC7078571/ /pubmed/32194330 http://dx.doi.org/10.1016/j.jsps.2020.01.008 Text en © 2020 Published by Elsevier B.V. on behalf of King Saud University. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wang, Yuandou
Xi, Laishun
Zhang, Baogang
Zhu, Qingzhen
Su, Feng
Jelonek, Katarzyna
Orchel, Arkadiusz
Kasperczyk, Janusz
Li, Suming
Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title_full Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title_fullStr Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title_full_unstemmed Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title_short Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs
title_sort bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated ptmc-peg-ptmc triblock copolymers as potential carrier of antitumor drugs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078571/
https://www.ncbi.nlm.nih.gov/pubmed/32194330
http://dx.doi.org/10.1016/j.jsps.2020.01.008
work_keys_str_mv AT wangyuandou bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT xilaishun bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT zhangbaogang bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT zhuqingzhen bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT sufeng bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT jelonekkatarzyna bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT orchelarkadiusz bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT kasperczykjanusz bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs
AT lisuming bioresorbablehydrogelspreparedbyphotoinitiatedcrosslinkingofdiacrylatedptmcpegptmctriblockcopolymersaspotentialcarrierofantitumordrugs