Cargando…

Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci

Porphyromonas gingivalis is associated with chronic periodontitis and may initially colonize the oral cavity by adhering to streptococci. Adhesion to streptococci is driven by interaction of the minor fimbrial antigen (Mfa1) with streptococcal antigen I/II. We identified the region of antigen I/II r...

Descripción completa

Detalles Bibliográficos
Autores principales: Roky, Mohammad, Trent, John O., Demuth, Donald R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078856/
https://www.ncbi.nlm.nih.gov/pubmed/31994329
http://dx.doi.org/10.1111/omi.12280
_version_ 1783507704449335296
author Roky, Mohammad
Trent, John O.
Demuth, Donald R.
author_facet Roky, Mohammad
Trent, John O.
Demuth, Donald R.
author_sort Roky, Mohammad
collection PubMed
description Porphyromonas gingivalis is associated with chronic periodontitis and may initially colonize the oral cavity by adhering to streptococci. Adhesion to streptococci is driven by interaction of the minor fimbrial antigen (Mfa1) with streptococcal antigen I/II. We identified the region of antigen I/II required for this interaction and developed small molecule mimetics that inhibited P. gingivalis adherence. However, the functional motifs of Mfa1 involved in the interaction with antigen I/II remain uncharacterized. A series of N‐ and C‐terminal peptide fragments of Mfa1 were expressed and tested for inhibition of P. gingivalis adherence to S. gordonii. This approach identified residues 225–400 of Mfa1 as essential for P. gingivalis adherence. Using the three‐dimensional structure of Mfa1, a putative binding cleft was identified using SiteMap and five small molecule mimetics could dock in this site. Site‐specific mutation of residues in the predicted cleft, including R240A, W275A, D321A and A357P inhibited the interaction of Mfa1 with streptococci, whereas mutation of residues not in the predicted cleft (V238A, I252F and ΔK253) had no effect. Complementation of an Mfa1‐deficient P. gingivalis strain with wild‐type mfa1 restored adherence to streptococci, whereas complementation with full‐length mfa1 containing the R240A or A357P mutations did not restore adherence. The mutations did not affect polymerization of Mfa1, suggesting that the complemented strains produced intact minor fimbriae. These results identified specific residues and structural motifs required for the Mfa1‐antigen I/II interaction and will facilitate the design of small molecule therapeutics to prevent P. gingivalis colonization of the oral cavity.
format Online
Article
Text
id pubmed-7078856
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70788562020-03-19 Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci Roky, Mohammad Trent, John O. Demuth, Donald R. Mol Oral Microbiol Original Articles Porphyromonas gingivalis is associated with chronic periodontitis and may initially colonize the oral cavity by adhering to streptococci. Adhesion to streptococci is driven by interaction of the minor fimbrial antigen (Mfa1) with streptococcal antigen I/II. We identified the region of antigen I/II required for this interaction and developed small molecule mimetics that inhibited P. gingivalis adherence. However, the functional motifs of Mfa1 involved in the interaction with antigen I/II remain uncharacterized. A series of N‐ and C‐terminal peptide fragments of Mfa1 were expressed and tested for inhibition of P. gingivalis adherence to S. gordonii. This approach identified residues 225–400 of Mfa1 as essential for P. gingivalis adherence. Using the three‐dimensional structure of Mfa1, a putative binding cleft was identified using SiteMap and five small molecule mimetics could dock in this site. Site‐specific mutation of residues in the predicted cleft, including R240A, W275A, D321A and A357P inhibited the interaction of Mfa1 with streptococci, whereas mutation of residues not in the predicted cleft (V238A, I252F and ΔK253) had no effect. Complementation of an Mfa1‐deficient P. gingivalis strain with wild‐type mfa1 restored adherence to streptococci, whereas complementation with full‐length mfa1 containing the R240A or A357P mutations did not restore adherence. The mutations did not affect polymerization of Mfa1, suggesting that the complemented strains produced intact minor fimbriae. These results identified specific residues and structural motifs required for the Mfa1‐antigen I/II interaction and will facilitate the design of small molecule therapeutics to prevent P. gingivalis colonization of the oral cavity. John Wiley and Sons Inc. 2020-02-13 2020-04 /pmc/articles/PMC7078856/ /pubmed/31994329 http://dx.doi.org/10.1111/omi.12280 Text en © 2020 The Authors. Molecular Oral Microbiology published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Roky, Mohammad
Trent, John O.
Demuth, Donald R.
Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title_full Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title_fullStr Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title_full_unstemmed Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title_short Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci
title_sort identification of functional domains of the minor fimbrial antigen involved in the interaction of porphyromonas gingivalis with oral streptococci
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078856/
https://www.ncbi.nlm.nih.gov/pubmed/31994329
http://dx.doi.org/10.1111/omi.12280
work_keys_str_mv AT rokymohammad identificationoffunctionaldomainsoftheminorfimbrialantigeninvolvedintheinteractionofporphyromonasgingivaliswithoralstreptococci
AT trentjohno identificationoffunctionaldomainsoftheminorfimbrialantigeninvolvedintheinteractionofporphyromonasgingivaliswithoralstreptococci
AT demuthdonaldr identificationoffunctionaldomainsoftheminorfimbrialantigeninvolvedintheinteractionofporphyromonasgingivaliswithoralstreptococci