Cargando…
CytoNorm: A Normalization Algorithm for Cytometry Data
High‐dimensional flow cytometry has matured to a level that enables deep phenotyping of cellular systems at a clinical scale. The resulting high‐content data sets allow characterizing the human immune system at unprecedented single cell resolution. However, the results are highly dependent on sample...
Autores principales: | Van Gassen, Sofie, Gaudilliere, Brice, Angst, Martin S., Saeys, Yvan, Aghaeepour, Nima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078957/ https://www.ncbi.nlm.nih.gov/pubmed/31633883 http://dx.doi.org/10.1002/cyto.a.23904 |
Ejemplares similares
-
Protocol for large scale whole blood immune monitoring by mass cytometry and Cyto Quality Pipeline
por: Rybakowska, Paulina, et al.
Publicado: (2022) -
Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry
por: Spatz, J. M., et al.
Publicado: (2021) -
Data processing workflow for large-scale immune monitoring studies by mass cytometry
por: Rybakowska, Paulina, et al.
Publicado: (2021) -
PeacoQC: Peak‐based selection of high quality cytometry data
por: Emmaneel, Annelies, et al.
Publicado: (2021) -
Computational flow cytometry as a diagnostic tool in suspected‐myelodysplastic syndromes
por: Duetz, Carolien, et al.
Publicado: (2021)