Cargando…
Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury
BACKGROUND: Circulating cell‐free DNA (cfDNA) is not found in healthy subjects, but is readily detected after thermal injury and may contribute to the risk of multiple organ failure. The hypothesis was that a postburn reduction in DNase protein/enzyme activity could contribute to the increase in cfD...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079039/ https://www.ncbi.nlm.nih.gov/pubmed/31502663 http://dx.doi.org/10.1002/bjs.11310 |
_version_ | 1783507745847115776 |
---|---|
author | Dinsdale, R. J. Hazeldine, J. Al Tarrah, K. Hampson, P. Devi, A. Ermogenous, C. Bamford, A. L. Bishop, J. Watts, S. Kirkman, E. Dalle Lucca, J. J. Midwinter, M. Woolley, T. Foster, M. Lord, J. M. Moiemen, N. Harrison, P. |
author_facet | Dinsdale, R. J. Hazeldine, J. Al Tarrah, K. Hampson, P. Devi, A. Ermogenous, C. Bamford, A. L. Bishop, J. Watts, S. Kirkman, E. Dalle Lucca, J. J. Midwinter, M. Woolley, T. Foster, M. Lord, J. M. Moiemen, N. Harrison, P. |
author_sort | Dinsdale, R. J. |
collection | PubMed |
description | BACKGROUND: Circulating cell‐free DNA (cfDNA) is not found in healthy subjects, but is readily detected after thermal injury and may contribute to the risk of multiple organ failure. The hypothesis was that a postburn reduction in DNase protein/enzyme activity could contribute to the increase in cfDNA following thermal injury. METHODS: Patients with severe burns covering at least 15 per cent of total body surface area were recruited to a prospective cohort study within 24 h of injury. Blood samples were collected from the day of injury for 12 months. RESULTS: Analysis of blood samples from 64 patients revealed a significant reduction in DNase activity on days 1–28 after injury, compared with healthy controls. DNase protein levels were not affected, suggesting the presence of an enzyme inhibitor. Further analysis revealed that actin (an inhibitor of DNase) was present in serum samples from patients but not those from controls, and concentrations of the actin scavenging proteins gelsolin and vitamin D‐binding protein were significantly reduced after burn injury. In a pilot study of ten military patients with polytrauma, administration of blood products resulted in an increase in DNase activity and gelsolin levels. CONCLUSION: The results of this study suggest a novel biological mechanism for the accumulation of cfDNA following thermal injury by which high levels of actin released by damaged tissue cause a reduction in DNase activity. Restoration of the actin scavenging system could therefore restore DNase activity, and reduce the risk of cfDNA‐induced host tissue damage and thrombosis. |
format | Online Article Text |
id | pubmed-7079039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-70790392020-03-19 Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury Dinsdale, R. J. Hazeldine, J. Al Tarrah, K. Hampson, P. Devi, A. Ermogenous, C. Bamford, A. L. Bishop, J. Watts, S. Kirkman, E. Dalle Lucca, J. J. Midwinter, M. Woolley, T. Foster, M. Lord, J. M. Moiemen, N. Harrison, P. Br J Surg Original Articles BACKGROUND: Circulating cell‐free DNA (cfDNA) is not found in healthy subjects, but is readily detected after thermal injury and may contribute to the risk of multiple organ failure. The hypothesis was that a postburn reduction in DNase protein/enzyme activity could contribute to the increase in cfDNA following thermal injury. METHODS: Patients with severe burns covering at least 15 per cent of total body surface area were recruited to a prospective cohort study within 24 h of injury. Blood samples were collected from the day of injury for 12 months. RESULTS: Analysis of blood samples from 64 patients revealed a significant reduction in DNase activity on days 1–28 after injury, compared with healthy controls. DNase protein levels were not affected, suggesting the presence of an enzyme inhibitor. Further analysis revealed that actin (an inhibitor of DNase) was present in serum samples from patients but not those from controls, and concentrations of the actin scavenging proteins gelsolin and vitamin D‐binding protein were significantly reduced after burn injury. In a pilot study of ten military patients with polytrauma, administration of blood products resulted in an increase in DNase activity and gelsolin levels. CONCLUSION: The results of this study suggest a novel biological mechanism for the accumulation of cfDNA following thermal injury by which high levels of actin released by damaged tissue cause a reduction in DNase activity. Restoration of the actin scavenging system could therefore restore DNase activity, and reduce the risk of cfDNA‐induced host tissue damage and thrombosis. John Wiley & Sons, Ltd 2019-09-10 2020-03 /pmc/articles/PMC7079039/ /pubmed/31502663 http://dx.doi.org/10.1002/bjs.11310 Text en © 2019 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Dinsdale, R. J. Hazeldine, J. Al Tarrah, K. Hampson, P. Devi, A. Ermogenous, C. Bamford, A. L. Bishop, J. Watts, S. Kirkman, E. Dalle Lucca, J. J. Midwinter, M. Woolley, T. Foster, M. Lord, J. M. Moiemen, N. Harrison, P. Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title | Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title_full | Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title_fullStr | Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title_full_unstemmed | Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title_short | Dysregulation of the actin scavenging system and inhibition of DNase activity following severe thermal injury |
title_sort | dysregulation of the actin scavenging system and inhibition of dnase activity following severe thermal injury |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079039/ https://www.ncbi.nlm.nih.gov/pubmed/31502663 http://dx.doi.org/10.1002/bjs.11310 |
work_keys_str_mv | AT dinsdalerj dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT hazeldinej dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT altarrahk dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT hampsonp dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT devia dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT ermogenousc dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT bamfordal dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT bishopj dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT wattss dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT kirkmane dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT dalleluccajj dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT midwinterm dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT woolleyt dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT fosterm dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT lordjm dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT moiemenn dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury AT harrisonp dysregulationoftheactinscavengingsystemandinhibitionofdnaseactivityfollowingseverethermalinjury |