Cargando…
Machine Learning of Discriminative Gate Locations for Clinical Diagnosis
High‐throughput single‐cell cytometry technologies have significantly improved our understanding of cellular phenotypes to support translational research and the clinical diagnosis of hematological and immunological diseases. However, subjective and ad hoc manual gating analysis does not adequately...
Autores principales: | Ji, Disi, Putzel, Preston, Qian, Yu, Chang, Ivan, Mandava, Aishwarya, Scheuermann, Richard H., Bui, Jack D., Wang, Huan‐You, Smyth, Padhraic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079150/ https://www.ncbi.nlm.nih.gov/pubmed/31691488 http://dx.doi.org/10.1002/cyto.a.23906 |
Ejemplares similares
-
A cell-level discriminative neural network model for diagnosis of blood cancers
por: Robles, Edgar E, et al.
Publicado: (2023) -
A Joint Fairness Model with Applications to Risk Predictions for Under-represented Populations
por: Do, Hyungrok, et al.
Publicado: (2021) -
Machine learning to predict final fire size at the time of ignition
por: Coffield, Shane R., et al.
Publicado: (2019) -
Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base
por: Zhang, Yang, et al.
Publicado: (2020) -
Location Systems: An Introduction to the Technology Behind Location Awareness
por: LaMarca, Anthony, et al.
Publicado: (2008)