Cargando…

High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm

MR‐STAT is a recently proposed framework that allows the reconstruction of multiple quantitative parameter maps from a single short scan by performing spatial localisation and parameter estimation on the time‐domain data simultaneously, without relying on the fast Fourier transform (FFT). To do this...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Heide, Oscar, Sbrizzi, Alessandro, Luijten, Peter R., van den Berg, Cornelis A.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079175/
https://www.ncbi.nlm.nih.gov/pubmed/31985134
http://dx.doi.org/10.1002/nbm.4251
_version_ 1783507775995772928
author van der Heide, Oscar
Sbrizzi, Alessandro
Luijten, Peter R.
van den Berg, Cornelis A.T.
author_facet van der Heide, Oscar
Sbrizzi, Alessandro
Luijten, Peter R.
van den Berg, Cornelis A.T.
author_sort van der Heide, Oscar
collection PubMed
description MR‐STAT is a recently proposed framework that allows the reconstruction of multiple quantitative parameter maps from a single short scan by performing spatial localisation and parameter estimation on the time‐domain data simultaneously, without relying on the fast Fourier transform (FFT). To do this at high resolution, specialized algorithms are required to solve the underlying large‐scale nonlinear optimisation problem. We propose a matrix‐free and parallelized inexact Gauss–Newton based reconstruction algorithm for this purpose. The proposed algorithm is implemented on a high‐performance computing cluster and is demonstrated to be able to generate high‐resolution (1 mm  [Formula: see text]  1 mm in‐plane resolution) quantitative parameter maps in simulation, phantom, and in vivo brain experiments. Reconstructed [Formula: see text] and [Formula: see text] values for the gel phantoms are in agreement with results from gold standard measurements and, for the in vivo experiments, the quantitative values show good agreement with literature values. In all experiments, short pulse sequences with robust Cartesian sampling are used, for which MR fingerprinting reconstructions are shown to fail.
format Online
Article
Text
id pubmed-7079175
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70791752020-03-19 High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm van der Heide, Oscar Sbrizzi, Alessandro Luijten, Peter R. van den Berg, Cornelis A.T. NMR Biomed Research Articles MR‐STAT is a recently proposed framework that allows the reconstruction of multiple quantitative parameter maps from a single short scan by performing spatial localisation and parameter estimation on the time‐domain data simultaneously, without relying on the fast Fourier transform (FFT). To do this at high resolution, specialized algorithms are required to solve the underlying large‐scale nonlinear optimisation problem. We propose a matrix‐free and parallelized inexact Gauss–Newton based reconstruction algorithm for this purpose. The proposed algorithm is implemented on a high‐performance computing cluster and is demonstrated to be able to generate high‐resolution (1 mm  [Formula: see text]  1 mm in‐plane resolution) quantitative parameter maps in simulation, phantom, and in vivo brain experiments. Reconstructed [Formula: see text] and [Formula: see text] values for the gel phantoms are in agreement with results from gold standard measurements and, for the in vivo experiments, the quantitative values show good agreement with literature values. In all experiments, short pulse sequences with robust Cartesian sampling are used, for which MR fingerprinting reconstructions are shown to fail. John Wiley and Sons Inc. 2020-01-27 2020-04 /pmc/articles/PMC7079175/ /pubmed/31985134 http://dx.doi.org/10.1002/nbm.4251 Text en © 2020 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
van der Heide, Oscar
Sbrizzi, Alessandro
Luijten, Peter R.
van den Berg, Cornelis A.T.
High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title_full High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title_fullStr High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title_full_unstemmed High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title_short High‐resolution in vivo MR‐STAT using a matrix‐free and parallelized reconstruction algorithm
title_sort high‐resolution in vivo mr‐stat using a matrix‐free and parallelized reconstruction algorithm
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079175/
https://www.ncbi.nlm.nih.gov/pubmed/31985134
http://dx.doi.org/10.1002/nbm.4251
work_keys_str_mv AT vanderheideoscar highresolutioninvivomrstatusingamatrixfreeandparallelizedreconstructionalgorithm
AT sbrizzialessandro highresolutioninvivomrstatusingamatrixfreeandparallelizedreconstructionalgorithm
AT luijtenpeterr highresolutioninvivomrstatusingamatrixfreeandparallelizedreconstructionalgorithm
AT vandenbergcornelisat highresolutioninvivomrstatusingamatrixfreeandparallelizedreconstructionalgorithm