Cargando…

Individual and county-level variation in outcomes following non-fatal opioid-involved overdose

BACKGROUND: A lack of large-scale, individually linked data often has impeded efforts to disentangle individual-level variability in outcomes from area-level variability in studies of many diseases and conditions. This study investigated individual and county-level variability in outcomes following...

Descripción completa

Detalles Bibliográficos
Autores principales: Lowder, Evan Marie, Amlung, Joseph, Ray, Bradley R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079264/
https://www.ncbi.nlm.nih.gov/pubmed/31919146
http://dx.doi.org/10.1136/jech-2019-212915
Descripción
Sumario:BACKGROUND: A lack of large-scale, individually linked data often has impeded efforts to disentangle individual-level variability in outcomes from area-level variability in studies of many diseases and conditions. This study investigated individual and county-level variability in outcomes following non-fatal overdose in a state-wide cohort of opioid overdose patients. METHODS: Participants were 24 031 patients treated by emergency medical services or an emergency department for opioid-involved overdose in Indiana between 2014 and 2017. Outcomes included repeat non-fatal overdose, fatal overdose and death. County-level predictors included sociodemographic, socioeconomic and treatment availability indicators. Individual-level predictors included age, race, sex and repeat non-fatal opioid-involved overdose. Multilevel models examined outcomes following non-fatal overdose as a function of patient and county characteristics. RESULTS: 10.9% (n=2612) of patients had a repeat non-fatal overdose, 2.4% (n=580) died of drug overdose and 9.2% (n=2217) died overall. Patients with a repeat overdose were over three times more likely to die of drug-related causes (OR=3.68, 99.9% CI 2.62 to 5.17, p<0.001). County-level effects were limited primarily to treatment availability indicators. Higher rates of buprenorphine treatment providers were associated with lower rates of mortality (OR=0.82, 95% CI 0.68 to 0.97, p=0.024), but the opposite trend was found for naltrexone treatment providers (OR=1.20, 95% CI 1.03 to 1.39, p=0.021). Cross-level interactions showed higher rates of Black deaths relative to White deaths in counties with high rates of naltrexone providers (OR=1.73, 95% CI 1.09 to 2.73, p=0.019). CONCLUSION: Although patient-level differences account for most variability in opioid-related outcomes, treatment availability may contribute to county-level differences, necessitating multifaceted approaches for the treatment and prevention of opioid abuse.