Cargando…
Zingerone Promotes Osteoblast Differentiation Via MiR-200c-3p/smad7 Regulatory Axis in Human Bone Mesenchymal Stem Cells
BACKGROUND: Osteoblast differentiation is a critical process to maintain the stability of the bone homeostasis. Zingerone, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (ZG), isolated from ginger, performs a wide range of biological functions in human diseases. The objective of this paper was to clarify...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079314/ https://www.ncbi.nlm.nih.gov/pubmed/32146478 http://dx.doi.org/10.12659/MSM.919309 |
Sumario: | BACKGROUND: Osteoblast differentiation is a critical process to maintain the stability of the bone homeostasis. Zingerone, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone (ZG), isolated from ginger, performs a wide range of biological functions in human diseases. The objective of this paper was to clarify the role of ZG in human bone mesenchymal stem cells (hBMSCs) and associated mechanisms of ZG promoting osteoblast differentiation. MATERIAL/METHODS: The cytotoxicity of ZG was detected by MTT assay. The expression levels of miR-200c-3p, smad7, and osteoblast differentiation markers (alkaline phosphatase [ALP], osteocalcin [OC], osterix [OSX] and runt-related transcription factor 2 [RUNX2]) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of smad7, ALP, OC, OSX, and RUNX2 were quantified by western blot analysis. The target mRNAs were predicted by bioinformatics tools TargetScan. The interaction between miR-200c-3p and smad7 was verified by luciferase reporter assay and RIP assay. RESULTS: ZG was nontoxic to hBMSCs, and it accelerated osteoblast differentiation by inducing the expression of ALP, OC, OSX, and RUNX2. MiR-200c-3p was upregulated, but smad7 was downregulated in hBMSCs treated with ZG at different concentrations at different periods. Besides, miR-200c-3p positively regulated the expression of ALP, OC, OSX, and RUNX2 in ZG-induced hBMSCs. Moreover, miR-200c-3p targeted smad7 and strengthened the expression of ALP, OC, OSX, and RUNX2 in ZG-induced hBMSCs by downregulating smad7. CONCLUSIONS: ZG contributed to osteoblast differentiation via miR-200c-3p/smad7 regulatory axis by promoting the expression of ALP, OC, OSX, and RUNX2 in hBMSCs. |
---|