Cargando…

Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination

Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia, Victor, Bonhoeffer, Sebastian, Fu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079339/
https://www.ncbi.nlm.nih.gov/pubmed/32035826
http://dx.doi.org/10.1016/j.jtbi.2020.110185
_version_ 1783507800442273792
author Garcia, Victor
Bonhoeffer, Sebastian
Fu, Feng
author_facet Garcia, Victor
Bonhoeffer, Sebastian
Fu, Feng
author_sort Garcia, Victor
collection PubMed
description Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches. We did this for a family of three related models of increasing complexity. To this end, we developed a base model of CISI, which captures some essential features of the more complex models built on it. We find that the base model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of an immunological barrier. This behavior is also in accord with situations in which the suppressive effects exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, the model family may display a pattern of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in combination with the administration of immune effector cells, modifications in cancer cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. This bistability-reliant approach to cancer interventions might offer advantages over those that comprise gradual declines in cancer cell numbers.
format Online
Article
Text
id pubmed-7079339
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-70793392020-05-07 Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination Garcia, Victor Bonhoeffer, Sebastian Fu, Feng J Theor Biol Article Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches. We did this for a family of three related models of increasing complexity. To this end, we developed a base model of CISI, which captures some essential features of the more complex models built on it. We find that the base model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of an immunological barrier. This behavior is also in accord with situations in which the suppressive effects exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, the model family may display a pattern of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in combination with the administration of immune effector cells, modifications in cancer cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. This bistability-reliant approach to cancer interventions might offer advantages over those that comprise gradual declines in cancer cell numbers. Elsevier 2020-05-07 /pmc/articles/PMC7079339/ /pubmed/32035826 http://dx.doi.org/10.1016/j.jtbi.2020.110185 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Garcia, Victor
Bonhoeffer, Sebastian
Fu, Feng
Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title_full Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title_fullStr Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title_full_unstemmed Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title_short Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination
title_sort cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: a mathematical and computational examination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079339/
https://www.ncbi.nlm.nih.gov/pubmed/32035826
http://dx.doi.org/10.1016/j.jtbi.2020.110185
work_keys_str_mv AT garciavictor cancerinducedimmunosuppressioncanenableeffectivenessofimmunotherapythroughbistabilitygenerationamathematicalandcomputationalexamination
AT bonhoeffersebastian cancerinducedimmunosuppressioncanenableeffectivenessofimmunotherapythroughbistabilitygenerationamathematicalandcomputationalexamination
AT fufeng cancerinducedimmunosuppressioncanenableeffectivenessofimmunotherapythroughbistabilitygenerationamathematicalandcomputationalexamination