Cargando…
Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells
BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079383/ https://www.ncbi.nlm.nih.gov/pubmed/32183903 http://dx.doi.org/10.1186/s13148-020-00835-3 |
_version_ | 1783507810880847872 |
---|---|
author | Zhang, Baole Gu, Xiaohe Han, Xiao Gao, Qing Liu, Jie Guo, Tingwen Gao, Dianshuai |
author_facet | Zhang, Baole Gu, Xiaohe Han, Xiao Gao, Qing Liu, Jie Guo, Tingwen Gao, Dianshuai |
author_sort | Zhang, Baole |
collection | PubMed |
description | BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS: Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS: Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment. |
format | Online Article Text |
id | pubmed-7079383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70793832020-03-23 Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells Zhang, Baole Gu, Xiaohe Han, Xiao Gao, Qing Liu, Jie Guo, Tingwen Gao, Dianshuai Clin Epigenetics Research BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS: Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS: Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment. BioMed Central 2020-03-17 /pmc/articles/PMC7079383/ /pubmed/32183903 http://dx.doi.org/10.1186/s13148-020-00835-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zhang, Baole Gu, Xiaohe Han, Xiao Gao, Qing Liu, Jie Guo, Tingwen Gao, Dianshuai Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title | Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title_full | Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title_fullStr | Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title_full_unstemmed | Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title_short | Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells |
title_sort | crosstalk between dna methylation and histone acetylation triggers gdnf high transcription in glioblastoma cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079383/ https://www.ncbi.nlm.nih.gov/pubmed/32183903 http://dx.doi.org/10.1186/s13148-020-00835-3 |
work_keys_str_mv | AT zhangbaole crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT guxiaohe crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT hanxiao crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT gaoqing crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT liujie crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT guotingwen crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells AT gaodianshuai crosstalkbetweendnamethylationandhistoneacetylationtriggersgdnfhightranscriptioninglioblastomacells |