Cargando…
SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging
BACKGROUND: High throughput non-destructive phenotyping is emerging as a significant approach for phenotyping germplasm and breeding populations for the identification of superior donors, elite lines, and QTLs. Detection and counting of spikes, the grain bearing organs of wheat, is critical for phen...
Autores principales: | Misra, Tanuj, Arora, Alka, Marwaha, Sudeep, Chinnusamy, Viswanathan, Rao, Atmakuri Ramakrishna, Jain, Rajni, Sahoo, Rabi Narayan, Ray, Mrinmoy, Kumar, Sudhir, Raju, Dhandapani, Jha, Ranjeet Ranjan, Nigam, Aditya, Goel, Swati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079463/ https://www.ncbi.nlm.nih.gov/pubmed/32206080 http://dx.doi.org/10.1186/s13007-020-00582-9 |
Ejemplares similares
-
A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize
por: Haque, Md. Ashraful, et al.
Publicado: (2022) -
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021) -
SlypNet: Spikelet-based yield prediction of wheat using advanced plant phenotyping and computer vision techniques
por: Maji, Arpan K., et al.
Publicado: (2022) -
Bayesian Population Decoding of Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2009) -
Reading spike timing without a clock: intrinsic decoding of spike trains
por: Panzeri, Stefano, et al.
Publicado: (2014)