Cargando…

Dissecting the transcriptional regulatory networks of promoter-associated noncoding RNAs in development and cancer

In-depth analysis of global RNA sequencing has enabled a comprehensive overview of cellular transcriptomes and revealed the pervasive transcription of divergent RNAs from promoter regions across eukaryotic genomes. These studies disclosed that genomes encode a vast repertoire of RNAs beyond the well...

Descripción completa

Detalles Bibliográficos
Autores principales: Chellini, Lidia, Frezza, Valentina, Paronetto, Maria Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079525/
https://www.ncbi.nlm.nih.gov/pubmed/32183847
http://dx.doi.org/10.1186/s13046-020-01552-8
Descripción
Sumario:In-depth analysis of global RNA sequencing has enabled a comprehensive overview of cellular transcriptomes and revealed the pervasive transcription of divergent RNAs from promoter regions across eukaryotic genomes. These studies disclosed that genomes encode a vast repertoire of RNAs beyond the well-known protein-coding messenger RNAs. Furthermore, they have provided novel insights into the regulation of eukaryotic epigenomes, and transcriptomes, including the identification of novel classes of noncoding transcripts, such as the promoter-associated noncoding RNAs (pancRNAs). PancRNAs are defined as transcripts transcribed within few hundred bases from the transcription start sites (TSSs) of protein-coding or non-coding genes. Unlike the long trans-acting ncRNAs that regulate expression of target genes located in different chromosomal domains and displaying their function both in the nucleus and in the cytoplasm, the pancRNAs operate as cis-acting elements in the transcriptional regulation of neighboring genes. PancRNAs are very recently emerging as key players in the epigenetic regulation of gene expression programs in development and diseases. Herein, we review the complex epigenetic network driven by pancRNAs in eukaryotic cells, their impact on physiological and pathological states, which render them promising targets for novel therapeutic strategies.