Cargando…
Odor modulates the temporal dynamics of fear memory consolidation
Systems consolidation (SC) theory proposes that recent, contextually rich memories are stored in the hippocampus (HPC). As these memories become remote, they are believed to rely more heavily on cortical structures within the prefrontal cortex (PFC), where they lose much of their contextual detail a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079569/ https://www.ncbi.nlm.nih.gov/pubmed/32179657 http://dx.doi.org/10.1101/lm.050690.119 |
Sumario: | Systems consolidation (SC) theory proposes that recent, contextually rich memories are stored in the hippocampus (HPC). As these memories become remote, they are believed to rely more heavily on cortical structures within the prefrontal cortex (PFC), where they lose much of their contextual detail and become schematized. Odor is a particularly evocative cue for intense remote memory recall and despite these memories being remote, they are highly contextual. In instances such as posttraumatic stress disorder (PTSD), intense remote memory recall can occur years after trauma, which seemingly contradicts SC. We hypothesized that odor may shift the organization of salient or fearful memories such that when paired with an odor at the time of encoding, they are delayed in the de-contextualization process that occurs across time, and retrieval may still rely on the HPC, where memories are imbued with contextually rich information, even at remote time points. We investigated this by tagging odor- and non-odor-associated fear memories in male c57BL/6 mice and assessed recall and c-Fos expression in the dorsal CA1 (dCA1) and prelimbic cortex (PL) 1 or 21 d later. In support of SC, our data showed that recent memories were more dCA1-dependent whereas remote memories were more PL-dependent. However, we also found that odor influenced this temporal dynamic, biasing the memory system from the PL to the dCA1 when odor cues were present. Behaviorally, inhibiting the dCA1 with activity-dependent DREADDs had no effect on recall at 1 d and unexpectedly caused an increase in freezing at 21 d. Together, these findings demonstrate that odor can shift the organization of fear memories at the systems level. |
---|