Cargando…
Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites
The purpose of this work is to find an effective image segmentation method for lab-based micro-tomography (µ-CT) data of carbon fiber reinforced polymers (CFRP) with insufficient contrast-to-noise ratio. The segmentation is the first step in creating a realistic geometry (based on µ-CT) for finite e...
Autores principales: | Sinchuk, Yuriy, Kibleur, Pierre, Aelterman, Jan, Boone, Matthieu N., Van Paepegem, Wim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079634/ https://www.ncbi.nlm.nih.gov/pubmed/32093177 http://dx.doi.org/10.3390/ma13040936 |
Ejemplares similares
-
Correction: Sinchuk et al. Variational and Deep Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of Carbon/Epoxy Woven Composites. Materials 2020, 13, 936
por: Sinchuk, Yuriy, et al.
Publicado: (2022) -
Exploration of the X-ray Dark-Field Signal in Mineral Building Materials
por: Blykers, Benjamin K., et al.
Publicado: (2022) -
Analysis of the foam-forming of non-woven lightweight fibrous materials using X-ray tomography
por: Burke, S. R., et al.
Publicado: (2021) -
Characterization of Pharmaceutical Tablets by X-ray Tomography
por: Vijayakumar, Jaianth, et al.
Publicado: (2023) -
Dynamic Characteristics of Woven Flax/Epoxy Laminated Composite Plate
por: Gopalan, Venkatachalam, et al.
Publicado: (2021)