Cargando…
Nonuniformity of P-values Can Occur Early in Diverging Dimensions
Evaluating the joint significance of covariates is of fundamental importance in a wide range of applications. To this end, p-values are frequently employed and produced by algorithms that are powered by classical large-sample asymptotic theory. It is well known that the conventional p-values in Gaus...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079742/ https://www.ncbi.nlm.nih.gov/pubmed/32190012 |
Sumario: | Evaluating the joint significance of covariates is of fundamental importance in a wide range of applications. To this end, p-values are frequently employed and produced by algorithms that are powered by classical large-sample asymptotic theory. It is well known that the conventional p-values in Gaussian linear model are valid even when the dimensionality is a non-vanishing fraction of the sample size, but can break down when the design matrix becomes singular in higher dimensions or when the error distribution deviates from Gaussianity. A natural question is when the conventional p-values in generalized linear models become invalid in diverging dimensions. We establish that such a breakdown can occur early in nonlinear models. Our theoretical characterizations are confirmed by simulation studies. |
---|