Cargando…

Parameter identification for a stochastic SEIRS epidemic model: case study influenza

A recent parameter identification technique, the local lagged adapted generalized method of moments, is used to identify the time-dependent disease transmission rate and time-dependent noise for the stochastic susceptible, exposed, infectious, temporarily immune, susceptible disease model (SEIRS) wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mummert, Anna, Otunuga, Olusegun M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080032/
https://www.ncbi.nlm.nih.gov/pubmed/31062075
http://dx.doi.org/10.1007/s00285-019-01374-z
_version_ 1783507944842723328
author Mummert, Anna
Otunuga, Olusegun M.
author_facet Mummert, Anna
Otunuga, Olusegun M.
author_sort Mummert, Anna
collection PubMed
description A recent parameter identification technique, the local lagged adapted generalized method of moments, is used to identify the time-dependent disease transmission rate and time-dependent noise for the stochastic susceptible, exposed, infectious, temporarily immune, susceptible disease model (SEIRS) with vital rates. The stochasticity appears in the model due to fluctuations in the time-dependent transmission rate of the disease. All other parameter values are assumed to be fixed, known constants. The method is demonstrated with US influenza data from the 2004–2005 through 2016–2017 influenza seasons. The transmission rate and noise intensity stochastically work together to generate the yearly peaks in infections. The local lagged adapted generalized method of moments is tested for forecasting ability. Forecasts are made for the 2016–2017 influenza season and for infection data in year 2017. The forecast method qualitatively matches a single influenza season. Confidence intervals are given for possible future infectious levels.
format Online
Article
Text
id pubmed-7080032
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-70800322020-03-23 Parameter identification for a stochastic SEIRS epidemic model: case study influenza Mummert, Anna Otunuga, Olusegun M. J Math Biol Article A recent parameter identification technique, the local lagged adapted generalized method of moments, is used to identify the time-dependent disease transmission rate and time-dependent noise for the stochastic susceptible, exposed, infectious, temporarily immune, susceptible disease model (SEIRS) with vital rates. The stochasticity appears in the model due to fluctuations in the time-dependent transmission rate of the disease. All other parameter values are assumed to be fixed, known constants. The method is demonstrated with US influenza data from the 2004–2005 through 2016–2017 influenza seasons. The transmission rate and noise intensity stochastically work together to generate the yearly peaks in infections. The local lagged adapted generalized method of moments is tested for forecasting ability. Forecasts are made for the 2016–2017 influenza season and for infection data in year 2017. The forecast method qualitatively matches a single influenza season. Confidence intervals are given for possible future infectious levels. Springer Berlin Heidelberg 2019-05-06 2019 /pmc/articles/PMC7080032/ /pubmed/31062075 http://dx.doi.org/10.1007/s00285-019-01374-z Text en © Springer-Verlag GmbH Germany, part of Springer Nature 2019 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Mummert, Anna
Otunuga, Olusegun M.
Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title_full Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title_fullStr Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title_full_unstemmed Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title_short Parameter identification for a stochastic SEIRS epidemic model: case study influenza
title_sort parameter identification for a stochastic seirs epidemic model: case study influenza
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080032/
https://www.ncbi.nlm.nih.gov/pubmed/31062075
http://dx.doi.org/10.1007/s00285-019-01374-z
work_keys_str_mv AT mummertanna parameteridentificationforastochasticseirsepidemicmodelcasestudyinfluenza
AT otunugaolusegunm parameteridentificationforastochasticseirsepidemicmodelcasestudyinfluenza