Cargando…
Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury
Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin–angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-ge...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080102/ https://www.ncbi.nlm.nih.gov/pubmed/22246130 http://dx.doi.org/10.1007/s00109-012-0859-2 |
_version_ | 1783507959280566272 |
---|---|
author | Rey-Parra, G. J. Vadivel, A. Coltan, L. Hall, A. Eaton, F. Schuster, M. Loibner, H. Penninger, J. M. Kassiri, Z. Oudit, G. Y. Thébaud, B. |
author_facet | Rey-Parra, G. J. Vadivel, A. Coltan, L. Hall, A. Eaton, F. Schuster, M. Loibner, H. Penninger, J. M. Kassiri, Z. Oudit, G. Y. Thébaud, B. |
author_sort | Rey-Parra, G. J. |
collection | PubMed |
description | Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin–angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice—male (ACE2(−/y)) and female (ACE2(−/−))—and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(−/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(−/y) exposed to BLM, ACE2(−/−) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS. |
format | Online Article Text |
id | pubmed-7080102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-70801022020-03-23 Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury Rey-Parra, G. J. Vadivel, A. Coltan, L. Hall, A. Eaton, F. Schuster, M. Loibner, H. Penninger, J. M. Kassiri, Z. Oudit, G. Y. Thébaud, B. J Mol Med (Berl) Original Article Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin–angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice—male (ACE2(−/y)) and female (ACE2(−/−))—and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(−/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(−/y) exposed to BLM, ACE2(−/−) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS. Springer-Verlag 2012-01-14 2012 /pmc/articles/PMC7080102/ /pubmed/22246130 http://dx.doi.org/10.1007/s00109-012-0859-2 Text en © Springer-Verlag 2012 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Rey-Parra, G. J. Vadivel, A. Coltan, L. Hall, A. Eaton, F. Schuster, M. Loibner, H. Penninger, J. M. Kassiri, Z. Oudit, G. Y. Thébaud, B. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title | Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title_full | Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title_fullStr | Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title_full_unstemmed | Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title_short | Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
title_sort | angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080102/ https://www.ncbi.nlm.nih.gov/pubmed/22246130 http://dx.doi.org/10.1007/s00109-012-0859-2 |
work_keys_str_mv | AT reyparragj angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT vadivela angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT coltanl angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT halla angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT eatonf angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT schusterm angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT loibnerh angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT penningerjm angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT kassiriz angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT ouditgy angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury AT thebaudb angiotensinconvertingenzyme2abrogatesbleomycininducedlunginjury |