Cargando…
Recent advances in technology supporting biopharmaceutical production from mammalian cells
The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080107/ https://www.ncbi.nlm.nih.gov/pubmed/23053101 http://dx.doi.org/10.1007/s00253-012-4451-z |
_version_ | 1783507960471748608 |
---|---|
author | Butler, M. Meneses-Acosta, A. |
author_facet | Butler, M. Meneses-Acosta, A. |
author_sort | Butler, M. |
collection | PubMed |
description | The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals. |
format | Online Article Text |
id | pubmed-7080107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-70801072020-03-23 Recent advances in technology supporting biopharmaceutical production from mammalian cells Butler, M. Meneses-Acosta, A. Appl Microbiol Biotechnol Mini-Review The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals. Springer-Verlag 2012-10-05 2012 /pmc/articles/PMC7080107/ /pubmed/23053101 http://dx.doi.org/10.1007/s00253-012-4451-z Text en © Springer-Verlag Berlin Heidelberg 2012 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Mini-Review Butler, M. Meneses-Acosta, A. Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title | Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title_full | Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title_fullStr | Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title_full_unstemmed | Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title_short | Recent advances in technology supporting biopharmaceutical production from mammalian cells |
title_sort | recent advances in technology supporting biopharmaceutical production from mammalian cells |
topic | Mini-Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080107/ https://www.ncbi.nlm.nih.gov/pubmed/23053101 http://dx.doi.org/10.1007/s00253-012-4451-z |
work_keys_str_mv | AT butlerm recentadvancesintechnologysupportingbiopharmaceuticalproductionfrommammaliancells AT menesesacostaa recentadvancesintechnologysupportingbiopharmaceuticalproductionfrommammaliancells |