Cargando…
Reducing False-Positive Results in Newborn Screening Using Machine Learning
Newborn screening (NBS) for inborn metabolic disorders is a highly successful public health program that by design is accompanied by false-positive results. Here we trained a Random Forest machine learning classifier on screening data to improve prediction of true and false positives. Data included...
Autores principales: | Peng, Gang, Tang, Yishuo, Cowan, Tina M., Enns, Gregory M., Zhao, Hongyu, Scharfe, Curt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080200/ https://www.ncbi.nlm.nih.gov/pubmed/32190768 http://dx.doi.org/10.3390/ijns6010016 |
Ejemplares similares
-
Ethnic variability in newborn metabolic screening markers associated with false‐positive outcomes
por: Peng, Gang, et al.
Publicado: (2020) -
Timing of Newborn Blood Collection Alters Metabolic Disease Screening Performance
por: Peng, Gang, et al.
Publicado: (2021) -
Elevated methylmalonic acidemia (MMA) screening markers in Hispanic and preterm newborns
por: Peng, Gang, et al.
Publicado: (2018) -
Combining newborn metabolic and DNA analysis for second-tier testing of methylmalonic acidemia
por: Peng, Gang, et al.
Publicado: (2018) -
Development of Strategies to Decrease False Positive Results in Newborn Screening
por: Malvagia, Sabrina, et al.
Publicado: (2020)