Cargando…
On the Evolution of Regularized Dirac-Harmonic Maps from Closed Surfaces
We study the evolution equations for a regularized version of Dirac-harmonic maps from closed Riemannian surfaces. We establish the existence of a global weak solution for the regularized problem, which is smooth away from finitely many singularities. Moreover, we discuss the convergence of the evol...
Autor principal: | Branding, Volker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080694/ https://www.ncbi.nlm.nih.gov/pubmed/32214888 http://dx.doi.org/10.1007/s00025-020-1178-5 |
Ejemplares similares
-
Dirac-harmonic maps with potential
por: Branding, Volker
Publicado: (2022) -
On Finite Energy Solutions of 4-harmonic and ES-4-harmonic Maps
por: Branding, Volker
Publicado: (2021) -
On p-harmonic self-maps of spheres
por: Branding, Volker, et al.
Publicado: (2023) -
Global existence of Dirac-wave maps with curvature term on expanding spacetimes
por: Branding, Volker, et al.
Publicado: (2018) -
Some analytic results on interpolating sesqui-harmonic maps
por: Branding, Volker
Publicado: (2020)