Cargando…

Flow States and Associated Changes in Spatial and Temporal Processing

Improved perception during high performance is a commonly reported phenomenon. However, it is difficult to determine whether these reported changes experienced during flow states reflect veridical changes in perceptual processing, or if instead are related to some form of memory or response bias. Fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Sinnett, Scott, Jäger, Joshua, Singer, Sarah Morgana, Antonini Philippe, Roberta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080955/
https://www.ncbi.nlm.nih.gov/pubmed/32226403
http://dx.doi.org/10.3389/fpsyg.2020.00381
Descripción
Sumario:Improved perception during high performance is a commonly reported phenomenon. However, it is difficult to determine whether these reported changes experienced during flow states reflect veridical changes in perceptual processing, or if instead are related to some form of memory or response bias. Flow is a state in which an individual experiences high focus and involvement in a specific task, and typically experiences a lack of distractibility, a disordered sense of time, great enjoyment, and increased levels of performance. The present pre-registered study investigated 27 athletes and musicians using a temporal order judgement (TOJ) task before and after a sports or music performance over three sessions. Participants' flow experiences were surveyed in order to measure how modulations of flow over successive performances potentially modulates spatiotemporal perception and processing. Hierarchical linear modeling showed a positive moderation of subjectively experienced flow and performance on post-measures of a TOJ task. Specifically, the higher the subjective flow experience of the sport or music performance was rated, the better the participant performed in the post-performance TOJ task compared to the pre-performance TOJ task. The findings of the present study provide a more comprehensive explanation of human perception during flow at high level performances and suggest important insights regarding the possibility of modulated temporal processing and spatial attention.