Cargando…
Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process
The stability of retained austenite was improved by the dual-stable C-Mn partitioning process. The phase transformation and element diffusion of dual-stable C-Mn partitioning process of tested steel were investigated by means of EPMA, SEM, OM, tensile testing machine, and other analysis methods. The...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081034/ https://www.ncbi.nlm.nih.gov/pubmed/32211090 http://dx.doi.org/10.1155/2020/5931721 |
_version_ | 1783508103442989056 |
---|---|
author | Jing, Cainian Ding, Xiaoyun Ye, Daomin Zhao, Jingrui Lin, Tao Xu, Shubo |
author_facet | Jing, Cainian Ding, Xiaoyun Ye, Daomin Zhao, Jingrui Lin, Tao Xu, Shubo |
author_sort | Jing, Cainian |
collection | PubMed |
description | The stability of retained austenite was improved by the dual-stable C-Mn partitioning process. The phase transformation and element diffusion of dual-stable C-Mn partitioning process of tested steel were investigated by means of EPMA, SEM, OM, tensile testing machine, and other analysis methods. The effects of the first and second austenite stabilization time on the microstructure and mechanical properties of low-C-Si-Mn steel were studied, respectively. The enrichment of C and Mn elements is obvious after the dual-stable C-Mn partitioning process, and the microstructure of the tested steel is constituted of martensite, ferrite, and retained austenite. Compared with the conventional Q&P steel, the tensile strength of the steel treated by the dual-stable C-Mn partitioning process is slightly lower, but the plasticity is improved significantly. The tensile strength is 875-910 MPa, the elongation is 20-24%, and the product of strength and elongation can reach 21 GPa·%. |
format | Online Article Text |
id | pubmed-7081034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-70810342020-03-24 Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process Jing, Cainian Ding, Xiaoyun Ye, Daomin Zhao, Jingrui Lin, Tao Xu, Shubo Scanning Research Article The stability of retained austenite was improved by the dual-stable C-Mn partitioning process. The phase transformation and element diffusion of dual-stable C-Mn partitioning process of tested steel were investigated by means of EPMA, SEM, OM, tensile testing machine, and other analysis methods. The effects of the first and second austenite stabilization time on the microstructure and mechanical properties of low-C-Si-Mn steel were studied, respectively. The enrichment of C and Mn elements is obvious after the dual-stable C-Mn partitioning process, and the microstructure of the tested steel is constituted of martensite, ferrite, and retained austenite. Compared with the conventional Q&P steel, the tensile strength of the steel treated by the dual-stable C-Mn partitioning process is slightly lower, but the plasticity is improved significantly. The tensile strength is 875-910 MPa, the elongation is 20-24%, and the product of strength and elongation can reach 21 GPa·%. Hindawi 2020-03-07 /pmc/articles/PMC7081034/ /pubmed/32211090 http://dx.doi.org/10.1155/2020/5931721 Text en Copyright © 2020 Cainian Jing et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jing, Cainian Ding, Xiaoyun Ye, Daomin Zhao, Jingrui Lin, Tao Xu, Shubo Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title | Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title_full | Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title_fullStr | Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title_full_unstemmed | Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title_short | Effect of Different Isothermal Time on Microstructure and Mechanical Property of the Low-Carbon Steel Treated by Dual-Stable C-Mn Partitioning Process |
title_sort | effect of different isothermal time on microstructure and mechanical property of the low-carbon steel treated by dual-stable c-mn partitioning process |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081034/ https://www.ncbi.nlm.nih.gov/pubmed/32211090 http://dx.doi.org/10.1155/2020/5931721 |
work_keys_str_mv | AT jingcainian effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess AT dingxiaoyun effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess AT yedaomin effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess AT zhaojingrui effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess AT lintao effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess AT xushubo effectofdifferentisothermaltimeonmicrostructureandmechanicalpropertyofthelowcarbonsteeltreatedbydualstablecmnpartitioningprocess |