Cargando…

Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer

In one of every four or five cases of breast cancer, the human epidermal growth factor receptor-2 (HER2) gene is overexpressed. These carcinomas are known as HER2-positive. HER2 overexpression is linked to an aggressive phenotype and a lower rate of disease-free and overall survival. Drugs such as t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaibar, Maria, Beltrán, Laura, Romero-Lorca, Alicia, Fernández-Santander, Ana, Novillo, Apolonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081042/
https://www.ncbi.nlm.nih.gov/pubmed/32256585
http://dx.doi.org/10.1155/2020/6375956
_version_ 1783508105262268416
author Gaibar, Maria
Beltrán, Laura
Romero-Lorca, Alicia
Fernández-Santander, Ana
Novillo, Apolonia
author_facet Gaibar, Maria
Beltrán, Laura
Romero-Lorca, Alicia
Fernández-Santander, Ana
Novillo, Apolonia
author_sort Gaibar, Maria
collection PubMed
description In one of every four or five cases of breast cancer, the human epidermal growth factor receptor-2 (HER2) gene is overexpressed. These carcinomas are known as HER2-positive. HER2 overexpression is linked to an aggressive phenotype and a lower rate of disease-free and overall survival. Drugs such as trastuzumab, pertuzumab, lapatinib, neratinib, and the more recent afatinib target the deregulation of HER2 expression. Some authors have attributed somatic mutations in HER2, a role in resistance to anti-HER2 therapy as differential regulation of HER2 has been observed among patients. Recently, studies in metastatic ER + tumors suggest that some HER2 mutations emerge as a mechanism of acquired resistance to endocrine therapy. In an effort to identify possible biomarkers of the efficacy of anti-HER2 therapy, we here review the known single-nucleotide polymorphisms (SNPs) of the HER2 gene found in HER2-positive breast cancer patients and their relationship with clinical outcomes. Information was recompiled on 11 somatic HER2 SNPs. Seven polymorphisms are located in the tyrosine kinase domain region of the gene contrasting with the low number of mutations found in extracellular and transmembrane areas. HER2-positive patients carrying S310F, S310Y, R678Q, D769H, or I767M mutations seem good candidates for anti-HER2 therapy as they show favorable outcomes and a good response to current pharmacological treatments. Carrying the L755S or D769Y mutation could also confer benefits when receiving neratinib or afatinib. By contrast, patients with mutations L755S, V842I, K753I, or D769Y do not seem to benefit from trastuzumab. Resistance to lapatinib has been reported in patients with L755S, V842I, and K753I. These data suggest that exploring HER2 SNPs in each patient could help individualize anti-HER2 therapies. Advances in our understanding of the genetics of the HER2 gene and its relations with the efficacy of anti-HER2 treatments are needed to improve the outcomes of patients with this aggressive breast cancer.
format Online
Article
Text
id pubmed-7081042
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-70810422020-04-03 Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer Gaibar, Maria Beltrán, Laura Romero-Lorca, Alicia Fernández-Santander, Ana Novillo, Apolonia J Oncol Review Article In one of every four or five cases of breast cancer, the human epidermal growth factor receptor-2 (HER2) gene is overexpressed. These carcinomas are known as HER2-positive. HER2 overexpression is linked to an aggressive phenotype and a lower rate of disease-free and overall survival. Drugs such as trastuzumab, pertuzumab, lapatinib, neratinib, and the more recent afatinib target the deregulation of HER2 expression. Some authors have attributed somatic mutations in HER2, a role in resistance to anti-HER2 therapy as differential regulation of HER2 has been observed among patients. Recently, studies in metastatic ER + tumors suggest that some HER2 mutations emerge as a mechanism of acquired resistance to endocrine therapy. In an effort to identify possible biomarkers of the efficacy of anti-HER2 therapy, we here review the known single-nucleotide polymorphisms (SNPs) of the HER2 gene found in HER2-positive breast cancer patients and their relationship with clinical outcomes. Information was recompiled on 11 somatic HER2 SNPs. Seven polymorphisms are located in the tyrosine kinase domain region of the gene contrasting with the low number of mutations found in extracellular and transmembrane areas. HER2-positive patients carrying S310F, S310Y, R678Q, D769H, or I767M mutations seem good candidates for anti-HER2 therapy as they show favorable outcomes and a good response to current pharmacological treatments. Carrying the L755S or D769Y mutation could also confer benefits when receiving neratinib or afatinib. By contrast, patients with mutations L755S, V842I, K753I, or D769Y do not seem to benefit from trastuzumab. Resistance to lapatinib has been reported in patients with L755S, V842I, and K753I. These data suggest that exploring HER2 SNPs in each patient could help individualize anti-HER2 therapies. Advances in our understanding of the genetics of the HER2 gene and its relations with the efficacy of anti-HER2 treatments are needed to improve the outcomes of patients with this aggressive breast cancer. Hindawi 2020-03-07 /pmc/articles/PMC7081042/ /pubmed/32256585 http://dx.doi.org/10.1155/2020/6375956 Text en Copyright © 2020 Maria Gaibar et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Gaibar, Maria
Beltrán, Laura
Romero-Lorca, Alicia
Fernández-Santander, Ana
Novillo, Apolonia
Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title_full Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title_fullStr Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title_full_unstemmed Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title_short Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer
title_sort somatic mutations in her2 and implications for current treatment paradigms in her2-positive breast cancer
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081042/
https://www.ncbi.nlm.nih.gov/pubmed/32256585
http://dx.doi.org/10.1155/2020/6375956
work_keys_str_mv AT gaibarmaria somaticmutationsinher2andimplicationsforcurrenttreatmentparadigmsinher2positivebreastcancer
AT beltranlaura somaticmutationsinher2andimplicationsforcurrenttreatmentparadigmsinher2positivebreastcancer
AT romerolorcaalicia somaticmutationsinher2andimplicationsforcurrenttreatmentparadigmsinher2positivebreastcancer
AT fernandezsantanderana somaticmutationsinher2andimplicationsforcurrenttreatmentparadigmsinher2positivebreastcancer
AT novilloapolonia somaticmutationsinher2andimplicationsforcurrenttreatmentparadigmsinher2positivebreastcancer