Cargando…
Development of a MALDI-TOF MS-based screening panel for accelerated differential detection of carbapenemases in Enterobacterales using the direct-on-target microdroplet growth assay
Carbapenemase-producing bacteria are a growing issue worldwide. Most phenotypic detection methods are culture-based, requiring long incubation times. We present a phenotypic screening panel for detection of carbapenem non-susceptibility and differentiation of carbapenemase classes and AmpC, the MALD...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081182/ https://www.ncbi.nlm.nih.gov/pubmed/32193431 http://dx.doi.org/10.1038/s41598-020-61890-7 |
Sumario: | Carbapenemase-producing bacteria are a growing issue worldwide. Most phenotypic detection methods are culture-based, requiring long incubation times. We present a phenotypic screening panel for detection of carbapenem non-susceptibility and differentiation of carbapenemase classes and AmpC, the MALDI-TOF MS-based direct-on-target microdroplet growth assay (DOT-MGA). It was validated on 7 reference strains and 20 challenge Enterobacterales isolates. Broth microdilution (BMD) and combination disk test (CDT) were also performed, as well as PCR as reference method. The panel based on the synergy between meropenem and carbapenemase inhibitors, determined by incubating these substances with bacterial suspension on a MALDI-TOF MS target and subsequently assessing bacterial growth on the target’s spots by MS. After 4 hours of incubation, DOT-MGA correctly identified KPC, MBL and OXA (100% agreement with PCR). Detection of AmpC coincided with BMD and CDT but agreement with PCR was low, not ruling out false negative PCR results. DOT-MGA delivered more accurate results than BMD and CDT in a significantly shorter time, allowing for detection of carbapenem non-susceptibility, MIC determination and carbapenemase differentiation in one step. |
---|