Cargando…

A flexible topo-optical sensing technology with ultra-high contrast

Elastic folding, a phenomenon widely existing in nature, has attracted great interests to understand the math and physical science behind the topological transition on surface, thus can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing strategy with ultra-high...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Cong, Wang, Ding, Kozhevnikov, Valery, Dai, Xingyi, Turnbull, Graeme, Chen, Xue, Kong, Jie, Tang, Ben Zhong, Li, Yifan, Xu, Ben Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081276/
https://www.ncbi.nlm.nih.gov/pubmed/32193398
http://dx.doi.org/10.1038/s41467-020-15288-8
Descripción
Sumario:Elastic folding, a phenomenon widely existing in nature, has attracted great interests to understand the math and physical science behind the topological transition on surface, thus can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing strategy with ultra-high contrast by programming surface folds on targeted area with a thin optical indicator layer. A robust and precise signal generation can be achieved under mechanical compressive strains (>0.4). This approach bridges the gap in current mechano-responsive luminescence mechanism, by utilizing the unwanted oxygen quenching effect of Iridium-III (Ir-III) fluorophores to enable an ultra-high contrast signal. Moreover, this technology hosts a rich set of attractive features such as high strain sensing, encoded logic function, direct visualisation and good adaptivity to the local curvature, from which we hope it will enable new opportunities for designing next generation flexible/wearable devices.