Cargando…
Preparation of Foam-like Network Structure of Polypyrrole/Graphene Composite Particles Based on Cellulose Nanofibrils as Electrode Material
[Image: see text] Unusual polypyrrole/graphene/cellulose nanofibril (PPy/GR/CNF) composite particles were fabricated by introducing an in situ oxidative polymerization approach. Structural characterization of the composite particles showed foam-like network morphology with a large surface area of 62...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081294/ https://www.ncbi.nlm.nih.gov/pubmed/32201763 http://dx.doi.org/10.1021/acsomega.9b03006 |
Sumario: | [Image: see text] Unusual polypyrrole/graphene/cellulose nanofibril (PPy/GR/CNF) composite particles were fabricated by introducing an in situ oxidative polymerization approach. Structural characterization of the composite particles showed foam-like network morphology with a large surface area of 621 m(2)/g. The PPy/GR/CNF sample exhibited remarkable capacitance behavior in 1 M Na(2)SO(4). It showed a high specific capacitance of 264.3 F/g at 0.25 A/g, which represents a 51.7% increase compared to that of PPy/GR and a high capacitance of 155.5 F/g even at a high current density of 5 A/g. Meanwhile, it possessed high rate capability and good cycling performance (85.7% capacitance retention even after 1000 cycles). These excellent electrochemical performances were attributed to the structure of PPy/GR/CNF that can provide large surface areas and shorten electron diffusion pathways. More importantly, the CNF stabilized the structure of PPy and prevented chain breakdown during the charge/discharge process, which improved the cycling performance. Hence, this PPy/GR/CNF composite shows great potential for the fabrication of high-capacitance and low-cost supercapacitor electrode materials with good cycling performance. |
---|