Cargando…
Test-time augmentation for deep learning-based cell segmentation on microscopy images
Recent advancements in deep learning have revolutionized the way microscopy images of cells are processed. Deep learning network architectures have a large number of parameters, thus, in order to reach high accuracy, they require a massive amount of annotated data. A common way of improving accuracy...
Autores principales: | Moshkov, Nikita, Mathe, Botond, Kertesz-Farkas, Attila, Hollandi, Reka, Horvath, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081314/ https://www.ncbi.nlm.nih.gov/pubmed/32193485 http://dx.doi.org/10.1038/s41598-020-61808-3 |
Ejemplares similares
-
Author Correction: Test-time augmentation for deep learning-based cell segmentation on microscopy images
por: Moshkov, Nikita, et al.
Publicado: (2021) -
AnnotatorJ: an ImageJ plugin to ease hand annotation of cellular compartments
por: Hollandi, Réka, et al.
Publicado: (2020) -
OpSeF: Open Source Python Framework for Collaborative Instance Segmentation of Bioimages
por: Rasse, Tobias M., et al.
Publicado: (2020) -
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
por: Hollandi, Reka, et al.
Publicado: (2020) -
Melanoma segmentation using deep learning with test-time augmentations and conditional random fields
por: Ashraf, Hassan, et al.
Publicado: (2022)