Cargando…

Polymer Nanocomposites Containing Semiconductors as Advanced Materials for EMI Shielding

[Image: see text] Miniaturization of electronic devices and systems enhances the complexity of inbuilt circuitry, thereby giving rise to electromagnetic interference (EMI). EMI is a serious cause of concern as it affects the performance of a device, transmission channel, or system. In a quest to fin...

Descripción completa

Detalles Bibliográficos
Autores principales: Sushmita, Kumari, Madras, Giridhar, Bose, Suryasarathi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081317/
https://www.ncbi.nlm.nih.gov/pubmed/32201755
http://dx.doi.org/10.1021/acsomega.9b03641
Descripción
Sumario:[Image: see text] Miniaturization of electronic devices and systems enhances the complexity of inbuilt circuitry, thereby giving rise to electromagnetic interference (EMI). EMI is a serious cause of concern as it affects the performance of a device, transmission channel, or system. In a quest to find an effective solution to this problem, several materials, apart from the conventional metals, such as carbon derivatives, have been extensively explored recently. In addition to carbon derivatives, hybrid structures such as core–shell, conjugated systems, etc. have also been researched. However, semiconducting fillers have received less attention, especially in this application. Hence, this review article will primarily focus on the systematic understanding of the use of semiconductor-based polymer nanocomposites and how the band gap plays a crucial role in deciding the dielectric properties and subsequently the electromagnetic absorption behavior for shielding applications. Our primary aim is to highlight the mechanism of shielding involved in such nanocomposites in addition to discussing the synthesis and properties that lead to effective shielding. Such nanocomposites containing semiconductors can pave the way for alternate materials for EMI shielding applications that are lightweight, flexible, and easy to integrate.