Cargando…
graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein–Ligand Complexes
[Image: see text] In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein–ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (K(d)), inhibition constant (K(i)), and half ma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081425/ https://www.ncbi.nlm.nih.gov/pubmed/32201802 http://dx.doi.org/10.1021/acsomega.9b04162 |
_version_ | 1783508172806291456 |
---|---|
author | Karlov, Dmitry S. Sosnin, Sergey Fedorov, Maxim V. Popov, Petr |
author_facet | Karlov, Dmitry S. Sosnin, Sergey Fedorov, Maxim V. Popov, Petr |
author_sort | Karlov, Dmitry S. |
collection | PubMed |
description | [Image: see text] In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein–ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (K(d)), inhibition constant (K(i)), and half maximal inhibitory concentration (IC(50)). Being rigorously trained on the PDBbind dataset, the model achieves the Pearson correlation coefficient of 0.87 and the RMSE value of 1.05 in pK units, outperforming recently developed 3D convolutional neural network model K(deep). |
format | Online Article Text |
id | pubmed-7081425 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70814252020-03-20 graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein–Ligand Complexes Karlov, Dmitry S. Sosnin, Sergey Fedorov, Maxim V. Popov, Petr ACS Omega [Image: see text] In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein–ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (K(d)), inhibition constant (K(i)), and half maximal inhibitory concentration (IC(50)). Being rigorously trained on the PDBbind dataset, the model achieves the Pearson correlation coefficient of 0.87 and the RMSE value of 1.05 in pK units, outperforming recently developed 3D convolutional neural network model K(deep). American Chemical Society 2020-03-09 /pmc/articles/PMC7081425/ /pubmed/32201802 http://dx.doi.org/10.1021/acsomega.9b04162 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Karlov, Dmitry S. Sosnin, Sergey Fedorov, Maxim V. Popov, Petr graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein–Ligand Complexes |
title | graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes |
title_full | graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes |
title_fullStr | graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes |
title_full_unstemmed | graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes |
title_short | graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes |
title_sort | graphdelta: mpnn scoring function for the affinity
prediction of protein–ligand complexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081425/ https://www.ncbi.nlm.nih.gov/pubmed/32201802 http://dx.doi.org/10.1021/acsomega.9b04162 |
work_keys_str_mv | AT karlovdmitrys graphdeltampnnscoringfunctionfortheaffinitypredictionofproteinligandcomplexes AT sosninsergey graphdeltampnnscoringfunctionfortheaffinitypredictionofproteinligandcomplexes AT fedorovmaximv graphdeltampnnscoringfunctionfortheaffinitypredictionofproteinligandcomplexes AT popovpetr graphdeltampnnscoringfunctionfortheaffinitypredictionofproteinligandcomplexes |