Cargando…
graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein–Ligand Complexes
[Image: see text] In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein–ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (K(d)), inhibition constant (K(i)), and half ma...
Autores principales: | Karlov, Dmitry S., Sosnin, Sergey, Fedorov, Maxim V., Popov, Petr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081425/ https://www.ncbi.nlm.nih.gov/pubmed/32201802 http://dx.doi.org/10.1021/acsomega.9b04162 |
Ejemplares similares
-
Chemical space exploration guided by deep neural networks
por: Karlov, Dmitry S., et al.
Publicado: (2019) -
Robust deep learning based protein sequence design using ProteinMPNN
por: Dauparas, J., et al.
Publicado: (2022) -
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction
por: Liu, Chengyou, et al.
Publicado: (2023) -
A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity
por: Shen, Huimin, et al.
Publicado: (2021) -
Exploring Chemical Reaction Space with Reaction Difference
Fingerprints and Parametric t-SNE
por: Andronov, Mikhail, et al.
Publicado: (2021)