Cargando…
Evolving network representation learning based on random walks
Large-scale network mining and analysis is key to revealing the underlying dynamics of networks, not easily observable before. Lately, there is a fast-growing interest in learning low-dimensional continuous representations of networks that can be utilized to perform highly accurate and scalable grap...
Autores principales: | Heidari, Farzaneh, Papagelis, Manos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081665/ https://www.ncbi.nlm.nih.gov/pubmed/32215318 http://dx.doi.org/10.1007/s41109-020-00257-3 |
Ejemplares similares
-
Epidemic Spreading in Trajectory Networks
por: Pechlivanoglou, Tilemachos, et al.
Publicado: (2022) -
Signed random walk diffusion for effective representation learning in signed graphs
por: Jung, Jinhong, et al.
Publicado: (2022) -
Evolving schema representations in orbitofrontal ensembles during learning
por: Zhou, Jingfeng, et al.
Publicado: (2020) -
CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning
por: Kouhsar, Morteza, et al.
Publicado: (2022) -
GeneWalk identifies relevant gene functions for a biological context using network representation learning
por: Ietswaart, Robert, et al.
Publicado: (2021)