Cargando…
Shape Information Improves the Cross-Cohort Performance of Deep Learning-Based Segmentation of the Hippocampus
Performing an accurate segmentation of the hippocampus from brain magnetic resonance images is a crucial task in neuroimaging research, since its structural integrity is strongly related to several neurodegenerative disorders, including Alzheimer’s disease (AD). Some automatic segmentation tools are...
Autores principales: | Brusini, Irene, Lindberg, Olof, Muehlboeck, J-Sebastian, Smedby, Örjan, Westman, Eric, Wang, Chunliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081773/ https://www.ncbi.nlm.nih.gov/pubmed/32226359 http://dx.doi.org/10.3389/fnins.2020.00015 |
Ejemplares similares
-
Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis
por: Brusini, Irene, et al.
Publicado: (2022) -
TheHiveDB image data management and analysis framework
por: Muehlboeck, J-Sebastian, et al.
Publicado: (2014) -
AVRA: Automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks
por: Mårtensson, Gustav, et al.
Publicado: (2019) -
Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease
por: Poulakis, Konstantinos, et al.
Publicado: (2022) -
Differential Associations of IL-4 With Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer’s Disease
por: Boccardi, Virginia, et al.
Publicado: (2019)