Cargando…

Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p

BACKGROUND: Transplantation of exosomes derived from mesenchymal stem cells (MSCs-Exo) can improve the recovery of neurological function in rats after traumatic brain injury (TBI). We tested a new hypothesis that brain-derived neurotrophic factor (BDNF)-induced MSCs-Exo can effectively promote funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Huiyou, Jia, Zhilong, Ma, Ke, Zhang, Jian, Dai, Chen, Yao, Zitong, Deng, Wusheng, Su, Jianzhong, Wang, Renjie, Chen, Xuyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081927/
https://www.ncbi.nlm.nih.gov/pubmed/32150531
http://dx.doi.org/10.12659/MSM.920855
_version_ 1783508256871677952
author Xu, Huiyou
Jia, Zhilong
Ma, Ke
Zhang, Jian
Dai, Chen
Yao, Zitong
Deng, Wusheng
Su, Jianzhong
Wang, Renjie
Chen, Xuyi
author_facet Xu, Huiyou
Jia, Zhilong
Ma, Ke
Zhang, Jian
Dai, Chen
Yao, Zitong
Deng, Wusheng
Su, Jianzhong
Wang, Renjie
Chen, Xuyi
author_sort Xu, Huiyou
collection PubMed
description BACKGROUND: Transplantation of exosomes derived from mesenchymal stem cells (MSCs-Exo) can improve the recovery of neurological function in rats after traumatic brain injury (TBI). We tested a new hypothesis that brain-derived neurotrophic factor (BDNF)-induced MSCs-Exo can effectively promote functional recovery and neurogenesis in rats after TBI. MATERIAL/METHODS: BM-MSCs of rats were extracted by whole bone marrow culture, BDNF was added to BM-MSCs as an intervention, supernatant was collected, and exosomes were separated and purified by ultracentrifugation. Exosomes were identified by Western blot (WB), transmission electron microscopy (TEM), and particle size analysis and were subsequently used in cell and animal experiments. The experimental animals were divided into a sham group, a PBS group, an MSCs-Exo group, and a BDNF-induced MSCs-Exo group (n=12). An electric cortical contusion impactor (eCCI) was used to cause TBI in all rats except the sham group. We investigated the recovery of sensorimotor function and spatial learning ability, inflammation inhibition, and neuron regeneration in rats after TBI. RESULTS: Compared with the MSCs-Exo group, the BDNF-induced MSCs-Exo group showed better effects in promoting the recovery of sensorimotor function and spatial learning ability. BDNF-induced MSCs-Exo successfully inhibited inflammation and promoted neuronal regeneration in vivo and in vitro. We further analyzed miRNAs in BDNF-induced MSCs-Exo and MSCs-Exo and found that the expression of miR-216a-5p in BDNF-induced MSCs-Exo was significantly higher than that in MSCs-Exo as determined by qRT-PCR. Rescue experiments indicated that miR-216a-5p had a similar function as BDNF-induced MSCs-Exo. CONCLUSIONS: We found that BDNF-induced MSCs-Exo can improve cell migration and inhibit apoptosis better than MSCs-Exo in rats after TBI, and the mechanism may be related to the high expression of miR-216a-5p.
format Online
Article
Text
id pubmed-7081927
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-70819272020-03-25 Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p Xu, Huiyou Jia, Zhilong Ma, Ke Zhang, Jian Dai, Chen Yao, Zitong Deng, Wusheng Su, Jianzhong Wang, Renjie Chen, Xuyi Med Sci Monit Animal Study BACKGROUND: Transplantation of exosomes derived from mesenchymal stem cells (MSCs-Exo) can improve the recovery of neurological function in rats after traumatic brain injury (TBI). We tested a new hypothesis that brain-derived neurotrophic factor (BDNF)-induced MSCs-Exo can effectively promote functional recovery and neurogenesis in rats after TBI. MATERIAL/METHODS: BM-MSCs of rats were extracted by whole bone marrow culture, BDNF was added to BM-MSCs as an intervention, supernatant was collected, and exosomes were separated and purified by ultracentrifugation. Exosomes were identified by Western blot (WB), transmission electron microscopy (TEM), and particle size analysis and were subsequently used in cell and animal experiments. The experimental animals were divided into a sham group, a PBS group, an MSCs-Exo group, and a BDNF-induced MSCs-Exo group (n=12). An electric cortical contusion impactor (eCCI) was used to cause TBI in all rats except the sham group. We investigated the recovery of sensorimotor function and spatial learning ability, inflammation inhibition, and neuron regeneration in rats after TBI. RESULTS: Compared with the MSCs-Exo group, the BDNF-induced MSCs-Exo group showed better effects in promoting the recovery of sensorimotor function and spatial learning ability. BDNF-induced MSCs-Exo successfully inhibited inflammation and promoted neuronal regeneration in vivo and in vitro. We further analyzed miRNAs in BDNF-induced MSCs-Exo and MSCs-Exo and found that the expression of miR-216a-5p in BDNF-induced MSCs-Exo was significantly higher than that in MSCs-Exo as determined by qRT-PCR. Rescue experiments indicated that miR-216a-5p had a similar function as BDNF-induced MSCs-Exo. CONCLUSIONS: We found that BDNF-induced MSCs-Exo can improve cell migration and inhibit apoptosis better than MSCs-Exo in rats after TBI, and the mechanism may be related to the high expression of miR-216a-5p. International Scientific Literature, Inc. 2020-03-09 /pmc/articles/PMC7081927/ /pubmed/32150531 http://dx.doi.org/10.12659/MSM.920855 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Animal Study
Xu, Huiyou
Jia, Zhilong
Ma, Ke
Zhang, Jian
Dai, Chen
Yao, Zitong
Deng, Wusheng
Su, Jianzhong
Wang, Renjie
Chen, Xuyi
Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title_full Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title_fullStr Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title_full_unstemmed Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title_short Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p
title_sort protective effect of mesenchymal stromal cell-derived exosomes on traumatic brain injury via mir-216a-5p
topic Animal Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081927/
https://www.ncbi.nlm.nih.gov/pubmed/32150531
http://dx.doi.org/10.12659/MSM.920855
work_keys_str_mv AT xuhuiyou protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT jiazhilong protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT make protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT zhangjian protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT daichen protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT yaozitong protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT dengwusheng protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT sujianzhong protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT wangrenjie protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p
AT chenxuyi protectiveeffectofmesenchymalstromalcellderivedexosomesontraumaticbraininjuryviamir216a5p