Cargando…

The Beacon Calculus: A formal method for the flexible and concise modelling of biological systems

Biological systems are made up of components that change their actions (and interactions) over time and coordinate with other components nearby. Together with a large state space, the complexity of this behaviour can make it difficult to create concise mathematical models that can be easily extended...

Descripción completa

Detalles Bibliográficos
Autores principales: Boemo, Michael A., Cardelli, Luca, Nieduszynski, Conrad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082070/
https://www.ncbi.nlm.nih.gov/pubmed/32150540
http://dx.doi.org/10.1371/journal.pcbi.1007651
Descripción
Sumario:Biological systems are made up of components that change their actions (and interactions) over time and coordinate with other components nearby. Together with a large state space, the complexity of this behaviour can make it difficult to create concise mathematical models that can be easily extended or modified. This paper introduces the Beacon Calculus, a process algebra designed to simplify the task of modelling interacting biological components. Its breadth is demonstrated by creating models of DNA replication dynamics, the gene expression dynamics in response to DNA methylation damage, and a multisite phosphorylation switch. The flexibility of these models is shown by adapting the DNA replication model to further include two topics of interest from the literature: cooperative origin firing and replication fork barriers. The Beacon Calculus is supported with the open-source simulator bcs (https://github.com/MBoemo/bcs.git) to allow users to develop and simulate their own models.