Cargando…
Mechanism of cargo recognition by retromer-linked SNX-BAR proteins
Endocytic recycling of internalized transmembrane proteins is essential for many important physiological processes. Recent studies have revealed that retromer-related Sorting Nexin family (SNX)–Bin/Amphiphysin/Rvs (BAR) proteins can directly recognize cargoes like cation-independent mannose 6-phosph...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082075/ https://www.ncbi.nlm.nih.gov/pubmed/32150533 http://dx.doi.org/10.1371/journal.pbio.3000631 |
Sumario: | Endocytic recycling of internalized transmembrane proteins is essential for many important physiological processes. Recent studies have revealed that retromer-related Sorting Nexin family (SNX)–Bin/Amphiphysin/Rvs (BAR) proteins can directly recognize cargoes like cation-independent mannose 6-phosphate receptor (CI-MPR) and Insulin-like growth factor 1 receptor (IGF1R); however, it remains poorly understood how SNX-BARs select specific cargo proteins and whether they recognize additional ligands. Here, we discovered that the binding between SNX-BARs and CI-MPR or IGF1R is mediated by the phox-homology (PX) domain of SNX5 or SNX6 and a bipartite motif, termed SNX-BAR-binding motif (SBM), in the cargoes. Using this motif, we identified over 70 putative SNX-BAR ligands, many of which play critical roles in apoptosis, cell adhesion, signal transduction, or metabolite homeostasis. Remarkably, SNX-BARs could cooperate with both SNX27 and retromer in the recycling of ligands encompassing the SBM, PDZ-binding motif, or both motifs. Overall, our studies establish that SNX-BARs function as a direct cargo-selecting module for a large set of transmembrane proteins transiting the endosome, in addition to their roles in phospholipid recognition and biogenesis of tubular structures. |
---|