Cargando…
Predicting individual clinical trajectories of depression with generative embedding
Patients with major depressive disorder (MDD) show heterogeneous treatment response and highly variable clinical trajectories: while some patients experience swift recovery, others show relapsing-remitting or chronic courses. Predicting individual clinical trajectories at an early stage is a key cha...
Autores principales: | Frässle, Stefan, Marquand, Andre F., Schmaal, Lianne, Dinga, Richard, Veltman, Dick J., van der Wee, Nic J.A., van Tol, Marie-José, Schöbi, Dario, Penninx, Brenda W.J.H., Stephan, Klaas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082217/ https://www.ncbi.nlm.nih.gov/pubmed/32197140 http://dx.doi.org/10.1016/j.nicl.2020.102213 |
Ejemplares similares
-
Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017)
por: Dinga, Richard, et al.
Publicado: (2019) -
Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study
por: Schmaal, Lianne, et al.
Publicado: (2015) -
Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach
por: Dinga, Richard, et al.
Publicado: (2018) -
Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years
por: van Kleef, Rozemarijn S., et al.
Publicado: (2023) -
Default Mode Network Connectivity and Social Dysfunction in Major Depressive Disorder
por: Saris, Ilja M. J., et al.
Publicado: (2020)