Cargando…
Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets
Spiking neural networks (SNNs) present a promising computing model and enable bio-plausible information processing and event-driven based ultra-low power neuromorphic hardware. However, training SNNs to reach the same performances of conventional deep artificial neural networks (ANNs), particularly...
Autores principales: | Lee, Jeongjun, Zhang, Renqian, Zhang, Wenrui, Liu, Yu, Li, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082320/ https://www.ncbi.nlm.nih.gov/pubmed/32231513 http://dx.doi.org/10.3389/fnins.2020.00143 |
Ejemplares similares
-
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023)