Cargando…

The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples

Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex (“Kp”) includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present i...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbier, Elodie, Rodrigues, Carla, Depret, Geraldine, Passet, Virginie, Gal, Laurent, Piveteau, Pascal, Brisse, Sylvain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082575/
https://www.ncbi.nlm.nih.gov/pubmed/32005732
http://dx.doi.org/10.1128/AEM.02711-19
_version_ 1783508374173777920
author Barbier, Elodie
Rodrigues, Carla
Depret, Geraldine
Passet, Virginie
Gal, Laurent
Piveteau, Pascal
Brisse, Sylvain
author_facet Barbier, Elodie
Rodrigues, Carla
Depret, Geraldine
Passet, Virginie
Gal, Laurent
Piveteau, Pascal
Brisse, Sylvain
author_sort Barbier, Elodie
collection PubMed
description Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex (“Kp”) includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here, we analyzed 1,001 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR (zur-khe intergenic region) assay, was developed and used to detect Kp in 96 environmental samples. The results were compared to a culture-based method using Simmons citrate agar with 1% inositol medium coupled to matrix-assisted laser desorption ionization–time of flight mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 × 10(−1) CFU g(−1) after enrichment for 24 h in lysogeny broth supplemented with ampicillin, and it was 1.5 × 10(3) to 1.5 × 10(4) CFU g(−1) directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 multilocus sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific, and sensitive novel method to detect the presence of Kp in complex matrices and indicates that Kp isolates from environmental samples differ from clinical isolates. IMPORTANCE The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources.
format Online
Article
Text
id pubmed-7082575
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-70825752020-04-02 The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples Barbier, Elodie Rodrigues, Carla Depret, Geraldine Passet, Virginie Gal, Laurent Piveteau, Pascal Brisse, Sylvain Appl Environ Microbiol Methods Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex (“Kp”) includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here, we analyzed 1,001 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR (zur-khe intergenic region) assay, was developed and used to detect Kp in 96 environmental samples. The results were compared to a culture-based method using Simmons citrate agar with 1% inositol medium coupled to matrix-assisted laser desorption ionization–time of flight mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 × 10(−1) CFU g(−1) after enrichment for 24 h in lysogeny broth supplemented with ampicillin, and it was 1.5 × 10(3) to 1.5 × 10(4) CFU g(−1) directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 multilocus sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific, and sensitive novel method to detect the presence of Kp in complex matrices and indicates that Kp isolates from environmental samples differ from clinical isolates. IMPORTANCE The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources. American Society for Microbiology 2020-03-18 /pmc/articles/PMC7082575/ /pubmed/32005732 http://dx.doi.org/10.1128/AEM.02711-19 Text en Copyright © 2020 Barbier et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods
Barbier, Elodie
Rodrigues, Carla
Depret, Geraldine
Passet, Virginie
Gal, Laurent
Piveteau, Pascal
Brisse, Sylvain
The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title_full The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title_fullStr The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title_full_unstemmed The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title_short The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples
title_sort zkir assay, a real-time pcr method for the detection of klebsiella pneumoniae and closely related species in environmental samples
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082575/
https://www.ncbi.nlm.nih.gov/pubmed/32005732
http://dx.doi.org/10.1128/AEM.02711-19
work_keys_str_mv AT barbierelodie thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT rodriguescarla thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT depretgeraldine thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT passetvirginie thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT gallaurent thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT piveteaupascal thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT brissesylvain thezkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT barbierelodie zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT rodriguescarla zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT depretgeraldine zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT passetvirginie zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT gallaurent zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT piveteaupascal zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples
AT brissesylvain zkirassayarealtimepcrmethodforthedetectionofklebsiellapneumoniaeandcloselyrelatedspeciesinenvironmentalsamples