Cargando…
Radiomics and Deep Learning: Hepatic Applications
Radiomics and deep learning have recently gained attention in the imaging assessment of various liver diseases. Recent research has demonstrated the potential utility of radiomics and deep learning in staging liver fibroses, detecting portal hypertension, characterizing focal hepatic lesions, progno...
Autores principales: | Park, Hyo Jung, Park, Bumwoo, Lee, Seung Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082656/ https://www.ncbi.nlm.nih.gov/pubmed/32193887 http://dx.doi.org/10.3348/kjr.2019.0752 |
Ejemplares similares
-
Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI
por: Park, Hyo Jung, et al.
Publicado: (2022) -
Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI
por: Heo, Subin, et al.
Publicado: (2022) -
Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation
por: Lee, Seul Bi, et al.
Publicado: (2023) -
Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography
por: Park, Hyo Jung, et al.
Publicado: (2020) -
Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images
por: Ahn, Yura, et al.
Publicado: (2020)