Cargando…
Development, Validation and Comparison of Artificial Neural Network Models and Logistic Regression Models Predicting Survival of Unresectable Pancreatic Cancer
Background: Prediction models for the overall survival of pancreatic cancer remain unsatisfactory. We aimed to explore artificial neural networks (ANNs) modeling to predict the survival of unresectable pancreatic cancer patients. Methods: Thirty-two clinical parameters were collected from 221 unrese...
Autores principales: | Tong, Zhou, Liu, Yu, Ma, Hongtao, Zhang, Jindi, Lin, Bo, Bao, Xuanwen, Xu, Xiaoting, Gu, Changhao, Zheng, Yi, Liu, Lulu, Fang, Weijia, Deng, Shuiguang, Zhao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082923/ https://www.ncbi.nlm.nih.gov/pubmed/32232040 http://dx.doi.org/10.3389/fbioe.2020.00196 |
Ejemplares similares
-
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Logistic Regression of Ligands of Chemotaxis Receptors Offers Clues about Their Recognition by Bacteria
por: Sagawa, Takashi, et al.
Publicado: (2018) -
MLP-Based Regression Prediction Model For Compound Bioactivity
por: Qin, Yongfei, et al.
Publicado: (2022) -
DEB-TACE with irinotecan versus C-TACE for unresectable intrahepatic cholangiocarcinoma: a prospective clinical study
por: Wang, Junxiao, et al.
Publicado: (2023) -
Editorial: Artificial Intelligence (AI) Optimized Systems Modeling for the Deeper Understanding of Human Cancers
por: Ji, Zhiwei, et al.
Publicado: (2021)